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ABSTRACT 

 The mathematical pendulum is one of the most widely studied problems in 

engineering physics. However, this is primarily limited to the classical pendulum 

with a single massless  bar and mass configuration. Extensions to this include 

multi-degree of freedom systems, but many of the classical assumptions, such as 

a single bar per mass, are preserved. Several designs used in practice utilize 

multiple bars or trapezoidal configurations to enhance stability. Such designs 

have not been studied in detail. Also, there is a need for additional work to fully 

analyze their response characteristics. The two-string pendulum design 

characteristics are initially investigated, both in terms of oscillation and string 

tension. Analytical and numerical methodologies are applied to predict the 

response of the two-string pendulum in free and forced oscillations. Results are 

validated utilizing comparisons generated by simulations conducted with a 

standard commercial software package. A preliminary optimization study is 

conducted for a driven two-string pendulum.  Finally, in a typical design case, it is 

shown how to apply the results of the analysis and optimization studies 

developed in this work. 
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I. INTRODUCTION 

A. BACKGROUND 

The pendulum is one of the most commonly studied mechanical 

structures. Galileo himself made the first observation of the pendulum’s 

performance. He set the roots of the pendulum’s physics by realizing that the 

frequency of oscillation for a given pendulum is independent of its displacement’s 

amplitude for small amplitude oscillations, which enables the linearization of the 

equations of motion. [1]. 

Following this initial observation, numerous studies were performed on the 

pendulum’s physics. These studies were not limited to the simple or standard 

pendulum, but were extended to more complex pendulum structures. Some 

examples are the bifilar pendulum, the torsion pendulum, the double pendulum, 

and the Foucault pendulum. 

To describe analytically the oscillatory behavior of the numerous types of 

pendula, several techniques were developed. These techniques attempted to 

predict the solution of the pendulum’s dynamics, either by treating its attitude as 

a linear approximation, which produced acceptable and fairly accurate results for 

a limited number of cases (linearized pendulum, , etc.), or by facing its nonlinear 

character recruiting and applying complex methods (perturbation methods or the 

Lagrange method, which produces the exact nonlinear equation of motion).  

From a mathematical analysis viewpoint, the more composite the structure 

of the pendulum, the more complex the solution approach method. Some types 

of pendula present a linear character when the oscillation is constrained in small 

displacement amplitudes (standard and double pendulum). Large amplitude 

oscillations are nonlinear and sometimes show chaotic behavior (double 

pendulum). If the problem is approached from an energy perspective, in linear or 

linearized undriven oscillations, energy is conserved. Nevertheless, there are 

examples where energy is not conserved. Such cases may be simple to analyze, 
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such as an oscillation with a constant damping coefficient. Others, such as 

oscillations, including jumps or variable accelerating support motion, are not 

simple to analyze. 

B. MOTIVATION - OBJECTIVE 

Several mechanical structures have dynamic behavior similar to that of a 

pendulum. Some examples are different types of cranes and crane-like 

mechanisms used for marine vehicles, such as AUVs, rescue boats, and naval 

vessels for launching and recovery. Their multi-rope suspension mechanism is 

not designed to oscillate; rather, it is designed to prevent swinging and to 

promote stability. Another example of a pendulum system designed to prevent 

swinging is the Blackburn pendulum. [1].  

 

 

Figure 1.   The Blackburn pendulum 
 

The Blackburn pendulum’s suspension system is comprised of two strings 

forming a ‘’Y’’ shape. The purpose of this design is to provide two distinct and 

effective pendulum string lengths. Therefore, for an oscillatory motion within a 

A

B 

C 
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plane defined by the Y shape, the length of the pendulum is the distance from 

point B to point C. In contrast, for a motion within a plane perpendicular to the Y 

shape, the effective length is the distance from point A to point C. Therefore, two 

distinct frequencies of oscillation define the motion of the Blackburn pendulum in 

the two perpendicular planes. Thus, its modes of oscillation are described by 

superposition of the two basic frequencies. 

Nevertheless, all the previously mentioned characteristics of the Blackburn 

pendulum depend on the assumption that point B will not be able to oscillate with 

respect to one of the two strings that starts from B and ends at the support 

points, i.e., the distance of B from the two support points will always be constant. 

However, this assumption is valid under restrictions. A violent motion of the 

support would theoretically be able to disturb the partial equilibrium of the ‘’Y’’ 

pendulum.  

The motivation for this thesis was to obtain analytical expressions, as well 

as numerical solutions, to describe the behavior of oscillating pendula with 

designs similar to the one of the ‘’Y’’ pendulum. The basic model design that will 

be initially analyzed is the one of a Blackburn pendulum in which point A 

coincides with B, and is allowed to oscillate only within the plane defined by this 

“V’’ shape (more detailed description will be provided in the following sections). 

Moreover, since such a ‘’V’’ design is the basic element component of more 

complex suspension designs, its capability of preventing or damping oscillations 

will be investigated.  
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II. THE TWO-STRING PENDULUM 

A. MATHEMATICAL DESCRIPTION OF THE TWO-STRING PENDULUM   

1. Introduction 

The purpose of this section is to analyze the motion equations of the two-

string pendulum. For brevity within this thesis, this will be referred to as the 2-

pendulum. Several techniques will be used to analyze the motion of the 2-

pendulum with the aim to present an accurate solution to the nonlinear equations 

of motion that describes its motion. The main purpose is to compare main 

features of the dynamic response of the 2-pendulum with those of the standard 

single-mass, single-string pendulum. These comparisons will be in terms of the 

amplitude of the resulting motion, the resulting natural frequency of the oscillator, 

as well as the string tension. Different values of initial velocity and initial angular 

displacement will be used to investigate the system’s response to both an initial 

excitation and an initial displacement from its equilibrium position. 

2. The Standard Pendulum 

 

Figure 2.   Small angle oscillation of the standard pendulum 
 

θ
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First, we will investigate the motion of the simple gravity pendulum 

undergoing free undamped vibration. The model that we will use is shown in 

Figure 1 -- a sphere of mass m which is suspended with a massless string of 

length =  from its center of gravity. 

To derive the equations of motion, we will use the moment method. 

According to Newton’s Law, the inertial moment of the mass m must be equal to 

the sum of moments applied on the mass. 

  
 2 - sinm mgθ θ=  (2.1) 
 
 2 sin 0ml mglθ θ+ =  (2.2) 
 

Equation (2) above is nonlinear since it contains the term sinθ . We can 

substitute the trigonometric nonlinearity with its Taylor series expansion  

 
3 5

sin ...
3! 5!
θ θθ θ= − +  (2.3) 

 
To simplify our calculations, we will initially assume only small amplitude 

oscillations. In this case, we can assume without compromising accuracy that  

 sinθ θ≈   (2.4) 
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Figure 3.   Linear-nonlinear discrepancy  
 
 

As demonstrated by Figure 3, there is a range of θ where equation (4) is 

valid and provides a good approximation. As depicted in the same figure, the 

difference between the linearized and the nonlinear expression is negligible for 

values of 
10
πθ < . 

For such small amplitude oscillations, the equation of motion can be 

linearized 

    
 2 0m mgθ θ+ =  (2.5) 
or     

 0gθ θ+ =  (2.6) 

 
The solution to the above differential equation for initial displacement and 

velocity of 
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0

0(0)
(0)

θ θ

θ θ

=

=
 (2.7) 

becomes 

 

 ( ) ( )0 sin 0 cosn n
n

t tθθ ω θ ω
ω

= +  (2.8) 

     

where n
gω =  (2.9) 

 
 

is the natural frequency of the linear pendulum. 

From Figure 2, the restoring moment is 

 sinrF mg θ=  (2.10) 
  
or, for small oscillations, 

 θ=rF mg  (2.11) 
 

Another feature of the pendulum worth mentioning is the pendulum jump 

[5]. Pendulum jumps occur when the mass leaves the circular path defined by the 

string and follows other trajectories. Such response is only observed if the string 

tension becomes zero. This is dependent on the position of the pendulum and 

the initial conditions. From Figure 2, we can visualize that the centripetal force, 

which obliges the mass to follow a circular path, is 

 
2 2

cos cosmu muFc T mg T mgθ θ= = − ⇔ = +  (2.12) 

 
where u is the linear velocity of the mass. The magnitude of u depends only on 

the initial conditions, since only conservative forces govern the pendulum’s 

motion. Assuming the initial conditions (2.7), which are equivalent to  

0 0(1 cos )z θ= −  and 0 0u lθ= , the initial energy of the mass is 

2
0 0 0 0 0

1
2

E T V mu mgz= + = + . During oscillation, the energy of the mass for an 
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arbitrary angle θ would be 21
2

E T V mu mgz= + = + , where (1 cos )z θ= − . 

Since the total energy is conserved throughout the oscillation (absence of 

damping or other non-conservative forces) 0E E= , the magnitude of the linear 

velocity would be 

 02= −Eu gz
m

 (2.13) 

 
Finally, the tension of the string throughout the oscillation, from (2.12) and 

(2.13), will be equal to  

 02( ) cosθ−
= +

E mgzT mg  (2.14) 

where a positive sign denotes orientation towards the center of oscillation. This 

promotes the circular path motion of the mass. The only term of the latest 

equation that may take negative values and, thus, lead to zeroing the string 

tension, is cosmg θ . It may only happen for angular displacements greater than 

π
2

. 

The possibility of jumps is present only if the initial conditions allow the 

oscillator to climb to 
2
πθ > . After that point, the path of the mass would be 

governed by the regular equations which define a projectile with a given initial 

linear velocity magnitude and orientation; that is, until the position of the mass 

will again reach a distance equal to the natural length of the pendulum’s string. 

 

 

 

 

 

 

 



 10

 

3. The 2-Pendulum 

 

 
Figure 4.   The 2-pendulum 

 
 

The geometry of the 2-pendulum is pictured in Figure 4. The main 

distinguishable characteristic of the 2-pendulum, compared to the simple 

pendulum, is that the mass m is now suspended by two strings. To be consistent 

with the previous model, the strings’ perpendicular distance from the plane of 

suspension will be l . Consequently, 
cos

l
α

= . The point of application of the 

strings on the mass is again at its center of gravity while each string forms an 

angle α with respect to the perpendicular. Our aim is to evaluate the effect of this 

angle on the motion of the mass m. 
For the purposes of this preliminary analysis, we will assume that the 

governing force during the pendulum oscillation is the weight. That means that  

 

α  

l  



 11

we will not, for now examine the forces applied on the mass to the point where it 

reaches the lower point of its trajectory and switches the string about which it 

swings.  

 

 
 

Figure 5.   Small angle oscillation of the 2-pendulum, θ<0 
 

 

θ-
α 

 

l

mg

( )sinmg θ α+

( )cosmg θ α+  
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Figure 6.   Small angle oscillation of the 2-pendulum, θ>0  
 
 

Assuming an angle θ (counterclockwise for positive values), as in Figure 

6, and equating inertia and non-inertia forces applied on the mass as before, the 

resulting equation of motion is 

 ( )2 sin 0θ θ α+ + =ml mgl  (2.15) 

or  

 sin( ) 0θ θ α+ + =g
l

 (2.16) 

To further develop equation (2.16), we should take into account that the 

term sin( )θ α+  takes positive values for the case of θ>0 (Figure 6), and 

negative values for the case of θ<0 (Figure 5). However, since the restoring force 

should always oppose further increase in the magnitude of the angle θ, it takes 

the same magnitude for the same α θ+ . Furthermore, using the trigonometric 

identity ( )sin sin cos cos sinb b bα α α+ = + , equation (2.16) becomes 

 ( )sin cos cos sin 0θ θ α θ α+ + =g
l

 (2.17) 

 

θ+ α

 

l

mg

( )sinmg θ α+( )cosmg θ α+  
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Examining equation (2.17), we can see that the consistency of the 

restoring force orientation is preserved in the term sin cosθ α  (because of 

sinθ ), but not in sin cosα θ  (since cosθ  does not change sign when θ changes 

sign). Consequently, to preserve the restoring force consistency for all values of 

θ, we should rewrite equation (2.17) as follows  

sin cos cos sin 0g g
l l

θ θ α θ α+ ± =   

This is equivalent to  

 

 sin cos cos sin sign 0θ θ α θ α θ+ + =g g
l l

 (2.18) 

  
 The sign nonlinearity assumes the value (+1) for positive and (-1) for 

negative arguments. In addition to the above, if we assume small angles of θ, we 

can rewrite (2.18) as follows 

 cos sin sign 0θ θ α α θ+ + =g g
l l

 (2.19) 

The restoring force from equation (2.15) is  

 sin( )θ α= +rF mg  (2.20) 
For small oscillations, equation (2.20) becomes  

 cos sin signθ α α θ= +rF mg mg  (2.21) 
 Our goal is to solve analytically and numerically differential equations 

(2.18). 

Finally, based on the previous analysis performed on the jumps for the 

standard pendulum, we realize that the 2-pendulum may exhibit the same 

behavior, only now the required angular displacement is
2 2
π πθ α θ α+ > ⇔ > − . 

4. Comments 

Despite its similarity with the standard pendulum, equation (2.18) exhibits 

some major characteristic differences. The most significant difference between 

the standard pendulum and the 2-pendulum is that the latter possesses a 
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discontinuity in its stiffness around the equilibrium position. As can be seen from 

(2.19), there is an instantaneous jump in the value of the restoring moment 

around zero. This is depicted in Figure 7 where the normalized spring constant of 

the 2-pendulum is shown for different values of α , along with the linear spring 

constant of the standard pendulum. This discontinuity at zero prevents us from a 

classical linearization of the 2-pendulum and requires different techniques for the 

analysis. Such techniques, based on the perturbation theory, are the subject of 

the analysis that follows. 
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Figure 7.   Normalized spring constant of the 2-pendulum 
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5. Velocity and Force Vector Analysis  

 

 
Figure 8.   General force and velocity diagram at the switch point 

 
Before advancing with the solution of equations (2.18) and (2.19), we 

should take into account the dynamics of the mass m at the point when it 

switches strings about which it swings. In Figure 8, we can visualize the forces, 

weight B, instantaneous string tension Τinst (blue with continuous line vectors), 

and their resultant R (blue dashed line vector). During the change, it acts on the 

mass and actually contributes to not only the switch at the center of rotation, but 

to the velocities just before Vb  (red vector), and just after, Va  (green vector) --

the switch. Nevertheless, since the weight of the mass is a conservative force 

and does not undergo changes in magnitude during this switch, we can safely 

assume that its contribution in the velocity direction switch is negligible. 

α 
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Figure 9.   Force and velocity diagram at the switch point for α=45o 

  

According to the vector diagram in Figure 9, there is a limiting value of 

angle α, which, if exceeded, the string switch is impossible. In the instance that 

Tinst lies in the same direction, but in opposite orientation to the Vb , this force is 

unable to change the direction of the velocity from Vb  to Va , irrespective of its 

magnitude. This limiting value is shown to be α=45o. In this case, this exact value 

of the mass will either stop or bounce in the same direction. However, the 

orientation of Tinst, will have a velocity magnitude less than or equal to Vb  

(depending on the energy absorption of the string). As a result, the following 

preliminary analysis, Chapter II, Section A, numbers 6, 7, and 8, will be valid only 

for α<45o. Furthermore, we will not consider the exact forces that affect dynamics 

and energy equivalence at the switch point. Rather, we will only take into account 

that their effect is the jump of the velocity from Vb  to Va , where Va Vb= . 

6. Numerical Integration Solution 

The numerical solution is performed using the Matlab function ode45. 

This ode45 Matlab function solves numerically the equation of motion and is able 

α=45o 
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to take into account nonlinearities, such as trigonometric functions and sign 

changes. Thus, ode45 will provide the exact solution, provided that an 

appropriate, fine enough, time step is selected. The Program_1.m Matlab-file 
was used to plot the angular displacement θ versus time for different values of 

angle α, assuming initial conditions 0(0)θ θ=  and (0) 0θ = . In parallel, we 

plotted the angular displacement θ versus time for a simple pendulum of string 

length . In addition, the Program_2.m provided the same kind of plots, where 

the initial conditions were (0) 0θ =  and 0(0)θ θ= .  

7. Analytical Solution 

Three different methods will be used to attempt to derive the exact or 

approximate solution to equation (14) or its equivalent (16). 

a. Exact Solution for a Time Increment 

One method we could use to obtain the solution of equation (2.18) 

is to solve it for the time period where the term sin signg
l

α θ  has a constant 

sign [2]. Thus, assuming an initial angular displacement θ(0)=Α, the equation of 

motion for 0<θ<Α is  

 
sin sin

cos cos
cos cos

α α
θ α

α α

⎛ ⎞
⎜ ⎟ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟

⎝ ⎠

= − + +
g g

gl lA tg g l
l l

 (2.22) 

or 

 ( )tan tan cos cosθ α α α
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= − + + gA t
l

 (2.23) 

Let us name the square of the pseudo-natural frequency of 

oscillation and of the equivalent pseudo-forcing amplitude as bellow 

 

2
0 cos

sin

ω α

α

=

=

g
l

gP
l

 (2.24) 
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At the time 1 2
0 0

1 1arccos
1

t
A
P

ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
+

 when θ=0, the velocity is 

( ) 01 0 2
0

sinPu t A tω ω
ω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= − +  

and then the equation of motion becomes  
 

 2
0θ ω θ+ = P  (2.25) 

with initial conditions ( ) 01 0 2
0

sinPu t A tω ω
ω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= − +  and ( )1 0tθ = , and so on. The 

value 1t  is equivalent to one quarter of the period of oscillation. 

Finally the period of oscillation is  

 2
0 0

4 1arccos
1ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
+

exactT
A
P

 (2.26) 

or 

 4 1arccos
1cos tanα α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=
+exactT Ag

l

 (2.27) 

so the frequency of oscillation is 

 2πω =exact
exactT

 (2.28) 

 

b. Method of Slowly Changing Phase and Amplitude 

A second method for obtaining the analytic solution only for the 

linearized equation (2.19) or , considering (2.24) 

 2
0 sign 0θ ω θ θ+ + =P , (2.29) 
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is using the method of Slowly Changing Phase and Amplitude [2]. This method 

states that the equations of the slowly changing phase ψ  and amplitude a  are 

 ( ) ( ){ } ( )2
0

0

1 - a sin sin a
2 a

πψ θ ψ ψ θ
π ω

⎡ ⎤⎣ ⎦= + +∫ P d  (2.30) 

 ( ) ( ){ } ( )2

0
0

1a - a sin sin a a
2 a

π θ ψ ψ
π ω

⎡ ⎤⎣ ⎦= + +∫ Psign d  (2.31) 

Evaluating the above integrals, 

a 0=   and 
0

4
2 a

Pψ
π ω

=  

     a A=  and  0
0

2P
A

ψ ψ
π ω

= +  

Finally, if we choose the initial conditions, such as 0 2
πψ = , the approximate 

solution is 

 0
0

2cosθ ω
π ω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= Α + P t
A

 (2.32) 

and the approximate period is  

 

0 2
0

2
21

π

ω
πω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

+
appT

P
A

 (2.33) 

while the approximate angular frequency is  

 0 2
0

21ω ω
πω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= +app
P

A
 (2.34) 

considering (2.24) 

 2tancos 1 αω α
π

⎛ ⎞
⎜ ⎟
⎝ ⎠

= +app
g
l A

 (2.35) 

 

c. Energy Method 

The application of this method suggests that we could approximate 

the equation of motion of the enhanced pendulum with one of a simple 

pendulum. However, the restoring force would be increased by a factor so that 
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the total work produced by this force along a time period would be the same as 

the forces that govern the motion of the enhanced pendulum. 

  From equation (2.20), the work produced by the restoring force of 

the enhanced pendulum for a motion 0<θ <θ0  is equal to   

 ( )0
0 sinθ α θ θ+∫ mg d  (2.36) 

while the one of the simple pendulum is  

 0
0 sinθ θ θ∫ mg d  (2.37) 

Dividing (2.36) by (2.37), we obtain a factor of 

 ( )0 0
0 0/sin sinθ θα θ θ θ θ= +∫ ∫F mg d mg d  (2.38) 

which provides us with an order of increased magnitude of forces applied during 

the oscillation of the enhanced pendulum compared to the ones applied on the 

simple pendulum.   

Thus, we will multiply the term sinθmg  by F and solve the 

approximate equation of motion  

 sin 0θ θ+ =gF
l

 (2.39) 

or in linear form, 

 0θ θ+ =gF
l

 (2.40) 

Thus, the approximate angular frequency of oscillation is 

 

 ω =app
g F
l

 (2.41) 

 

8. Evaluation of Results 

To evaluate both numerical and analytical approximations, we will first plot 

the three angular displacement solutions (ode45 numerical integration – Slowly 

Changing Phase and Amplitude method – Energy method). This will be 

compared to the solution of the standard pendulum in terms of gain and 

frequency of oscillation. This will best show that the 2-pendulum offers significant 
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gains in terms of increased restoring moment and frequency of oscillation. It, 

also, measures how close it comes to the exact solution (represented by the 

ode45 solution). The predicted response will be presented for two distinct initial 

conditions -- initial angular displacement and initial angular velocity. In addition to 

the above, we will plot the phase trajectories for the same initial conditions, as 

well as the comparison of the predicted angular frequencies of oscillation. This 

will help to better visualize the discrepancy of the prediction methods. 
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Figure 10.   α=π/6 
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Figure 11.   α=π/12 
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Figure 12.   α=π/18 
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Figure 13.   α=π/36 
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Figure 14.   α=π/90 
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Figure 15.   α=π/180 
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Figure 16.   Phase diagram α=π/6 
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Figure 17.   Phase diagram α=π/12 
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Figure 18.   Phase diagram α=π/18 
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Figure 19.   Phase diagram α=π/36 
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Figure 20.   Phase diagram α=π/90 
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Figure 21.   Phase diagram α=π/180 
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Figure 22.   α=π/6 with initial velocity 
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Figure 23.   α=π/12 with initial velocity 
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Figure 24.   α=π/18 with initial velocity 
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Figure 25.   α=π/36 with initial velocity 
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Figure 26.   α=π/90 with initial velocity 
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Figure 27.   α=π/180 with initial velocity 
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Figure 28.   θ0=π/6 
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Figure 29.   θ0=π/10 
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Figure 30.   θ0=π/20 
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Figure 31.   θ0=π/30 

 
 

In Figures 28, 29, 30, and 31, we can evaluate the accuracy of the 

response prediction method with respect to the initial displacement θο and value 

of the characteristic angle α. According to equations (2.28), (2.35), and (2.41), 

the oscillation angular frequency depends on both parameters. Therefore, the 

four plots consider four arbitrary values for the initial angular displacements. This 

allows us to better appreciate the accuracy of the two prediction methods, SCPA 

and Energy, with respect to the main attribute of the 2-pendulum, which is angle 

α. We should note that the three equations are valid only for the linear 

approximations of the equations of motion. In addition, the graphs consider 

α≤450, a restriction we already mentioned in the beginning of the analysis. 

According to the plots, we conclude the following: 
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• The angular frequency ω of the 2-pendulum is greater compared to 

the frequency of the standard pendulum which has the same equivalent string 

length . 

• A smaller maximum angular displacement for the 2-pendulum 

compared to the standard pendulum results from applying the same initial 

angular velocity. 

• The discrepancy between the two predictions, and the exact 

calculations, is very low for small values of α, but increases for larger ones. More 

specifically, while the Energy method follows the exact solution slope trend 

(although providing higher predicted values), the SCPA method increases almost 

linearly. 

• The SCPA method tends to provide more accurate predictions for 

larger values of θ0. If θ0 becomes too small, the discrepancy from the exact 

solution grows and, therefore, the predictions are incorrect. 

9. Horizontal and Vertical Displacements 

Despite the obvious advantage that the 2-pendulum possesses in terms of 

increased angular frequency of oscillation, increased restoring force, and 

reduced maximum angular displacements, it is worth mentioning a disadvantage: 

the differences of both horizontal and vertical displacements associated with 

angular displacements. The following figure depicts the relationship that governs 

the maximum horizontal and vertical displacements for θ0=π/18 and a range of α. 

This figure depicts that, for each angular displacement of the 2-pendulum, the 

horizontal and vertical displacements are smaller and greater respectively when 

compared to the standard pendulum. This is due to the two pendula’s different 

reference systems used to measure their angular displacements. Therefore, to 

obtain a better appreciation of the comparison between the standard and the 2-

pendulum, the previous examples of a will be plotted in terms of linear 

displacements instead of angular displacements (Figure 33).  
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Figure 32.   Variation of maximum vertical-horizontal displacements wrt 

characteristic angle α 
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Figure 33.   2-pendulum’s mass trajectories during oscillation  
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B. STRING TENSION INVESTIGATION 

1. Analytical Formulation 

Another important concept that requires further investigation is the tension 

applied on the string of the 2-pendulum. As already seen in equations (2.15) and 

(2.2), the restoring moment on the mass m is larger compared to the standard 

pendulum. Contrarily, the string tension has smaller values since two strings, 

instead of one, are used to suspend the mass. As pictured in Figure 3, while in 

equilibrium, positioning the string tension is dependant only on the value of the 

characteristic angle α 

  

 
2cosα

= mgTs  (2.42) 

 

According to Figure 4, during swinging and while the sign of angle θ is 

continuous, the string tension can be computed as follows  

                          

 ( )cos α θ= + +Ts Fc mg  (2.43) 

where 
2

2

l
muFc m lθ= =  is the centripetal force. 

Equation (2.43) shows that the magnitude of static Ts  ranges from      

2
mg Ts≤ ≤∞ , for 0

2
πα θ≤ + ≤ , proving that increasing the characteristic angle 

does not have only positive results in the overall design. 

To determine the dynamic string tension, trigonometric equalities are 

applied and   
2 cos cos sin sinTs m l mg mgθ α θ α θ= + −  

To attempt to linearize the above equation for θ< π
10

,  

 2 cos sinθ α θ αθ= + −Ts m l mg sign mg  (2.44) 
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For the standard pendulum, the calculations are easier. Therefore, the 

tension applied on the string, while in equilibrium position, is  

 =Ts mg  (2.45) 
and during the oscillation is 

 2 cosθ θ= +Ts m l mg  (2.46) 
or, for small amplitude oscillations, 

 2θ= +Ts m l mg  (2.47) 
 Since ode45 solves the exact differential equation of motion and, we 

already evaluated the accuracy of the predictions provided by the SCPA and 

Energy methods, the string tension simulation will be performed using the results 

provided by the ode45 method. 
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Figure 34.   Tension for α=π/18 – θ0=π/10 
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Figure 35.   Maximum and minimum tensions  
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Figure 36.   Maximum and minimum tensions 3-D variation  
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Figure 37.   Minimum tension variation 
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Figure 38.   Maximum tension variation 
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In Figure 34, we should note that this is not the variation of tension in one 

of the strings, but, rather, the sum of them. Although, each string’s tension is zero 

for every other half period, the fact that we describe the motion of the mass as an 

equivalent standard pendulum, with altered restoring force, and we do not 

distinguish the angular displacements with respect to the different strings from 

each other, leads us to treat the string tension with the same methodology. As a 

result, in each peak in Figure 34, the mass switches strings, and these exact 

switches take place when the string tension takes its maximum value. 

From Figures 35-38, we can evaluate the variation of maximum and 

minimum tensions exerted on the strings with respect to both α and θο. On the 

one hand, as expected, increasing θο increases the Tmax and decreases Tmin. 

On the other hand, increasing α, and keeping θο constant, steadily decreases 

Tmin. An interesting point is that Tmax does not exhibit the same behavior. In 

Figure 39, we can see for which value of α we will have the maximum tension for 

a range of initial displacements. 
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Figure 39.   Characteristic angle producing the maximum tension for given θ0 
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C. NUMERICAL SIMULATION  

A very precise method to simulate the response of the 2-pendulum is with 

the use of the VISUAL NASTRAN 4-D software. In this section we attempt to 

validate the methods that we used to predict the 2-pendulum response in 

Chapter II, Section A, by comparing their results with those produced by VN 4-D.  

1. VISUAL NASTRAN Software - SOLIDWORKS 

To simulate the response of the 2-string pendulum in real time, a specific 

procedure had to be followed. This procedure was initiated by designing a model 

of a 2-string pendulum using SOLIDWORKS. This 3-D design software allows 

the exact geometrical design of structural models, which are compatible with the 

VN 4-D software. This model is then transferred into VN 4-D. The distinct 

attribute of VN 4-D is to solve differential equations in 3-D space and time. The 

final model used in VN 4-D was comprised of geometrical parts: mass properties 

-- developed in SOLIDWORKS --, and their assembly -- developed partially in 

SOLIDWORKS and partially in VN 4-D. The assembly constraints, which resulted 

in the rigidity of the platform where the 2-pendulum support points were 

positioned, were developed in SOLIDWORKS. The string constraints were 

developed in VN 4-D. Before initiating each VN 4-D run, the mass had to be 

positioned in the exact coordinates. This was the equivalent to a combination of 

initial angular displacement θ0  and initial angular velocity θ0  of the VN 4-D. The 

results of the simulations (in terms of mass position wrt which is the model’s 

global system of axis, linear velocity, and tension of the strings) were then 

exported into Microsoft Excel spreadsheets. In addition, as defined in Figures 5 

and 6, the mass position results were processed to obtain the angular 

displacement of the pendulum. Finally, all the above results were graphed with 

the aid of Matlab. This allowed comparing them with our analysis results. 
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Figure 40.   Front view of 2-pendulum VN 4-D model 

                                                                                       

                                                                                    
  

Figure 41.   Side and bottom view of 2-pendulum VN 4-D model 
 

 The front, side, and bottom views of the model that were used for the VN 

4-D simulations can be visualized in Figures 40 and 41. In this model, one can 
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adjust the mass of the mass (blue sphere) and the characteristic angle by 

altering the length of the strings (black lines) or the distance between the support 

points (red cubes). In addition, an initial displacement can be applied to the mass 

by precisely positioning the mass to a specific position in terms of an exact set of 

coordinates (X,Y and Z), with respect to the Cartesian global system of axis 

represented by the black arrows. It should be noted that the exact positioning of 

the mass is not possible. For a few of the first time steps of the simulation, this 

results in a slight deviation of the expected results. The numerical integration 

parameters that were used in all the VN 4-D simulations are: 

 

A/A Simulation Parameter Value 

1 Integration Method Kutta-Menson 

2 Animation Time Frame 0.001 sec 

3 Integration Step  Variable - 0.0005 sec 

4 Steps per Frame 2 

 

Table 1. VN 4-D simulation parameters 

 

The above parameter combination yielded results that were tabulated in a 

time-step size of 0.001sec. This way compatibility was achieved with the 

previously presented results using the developed Matlab code. 

In the following example, we chose to solve the case of the 2-string 

pendulum of characteristic angle 
18
πα =  and initial angular displacement 

πθ =0 10
. For consistency we used 1m= , while the actual string length was 

1.0154m=l .    

The VN 4-D results will be compared to the predictions of the three 

methods described in Chapter II, Section A, numbers 6 and 7, for the same 

values of , l ,α and θ0.  
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Figure 42.   VN 4-D – α=π/18 – θ0=π/10 
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Figure 43.   Theoretical predictions for  α=π/18 and θ0=π/10 
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Figure 44.   Angular frequency comparison for α =π/18 and θ0=π/10 
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Figure 45.   Typical velocity variation for 2-pendulum 

 

2. Evaluation of Results 

In Figures 42 and 43, we can see the oscillation prediction using VN 4-D 

and the analytical methods, respectively. To more precisely appreciate the 

discrepancies between those methods’ predictions, Figure 44 will be used. We 

can clearly distinguish from Figure 44 that VN 4-D predicts that, with time, the 

amplitude of oscillation decreases and the angular frequency increases. Further, 

for angular frequency, the comparison was indispensable. We decided to plot the 

angular frequency every half-cycle to be able to capture the decrease in ω in the 

most possible detail. From Figure 44, we can realize that ode45 provided the 

most accurate prediction for the ω for the first half–cycle, compared to SCPA and 

Energy methods. Nevertheless, after that point, the ω of VN 4-D started to 

increase almost linearly. This increase in ω was not captured by the three other 

methods.  
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To understand why this increase in ω takes place, we plotted the angular 

frequency of oscillation predicted by VN 4-D. As seen in Figure 45, for every half-

cycle when the mass reached the point where it switched strings about which it 

oscillated, the velocity magnitude dropped by a certain amount. This 

discontinuity, just before and after the switch point in velocity magnitude, raises 

questions about energy conservation. In the following sections, we are going to 

investigate in more details the dynamics that surface at this point and their effect 

in terms of energy loss of the oscillation mass. 

D. THE REAL 2-PENDULUM 

1. Velocity and Force Vector Analysis-Impact Dynamics  

 

 
Figure 46.   Velocity and force vectors for 2-pendulum at switch point 

 

In Figure 46, we can visualize the forces that act on the mass during this 

change and contribute to the switch of center of rotation, as already depicted in 

Chapter II, Section A, number 1 and Figure 7. Nevertheless, in this section we 

α
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are going to emphasize the way that the forces change the direction of the linear 

velocity from Vb  toVa , as well as other effects, such as energy loss and 

termination of oscillation for α>45o.   

According to Figure 46, the dynamics of our problem strongly resemble 

the dynamics of a ball colliding with a rigid wall. For α<45o, the only known 

parameters are: i) vector Vb  (direction, orientation, and magnitude), ii) the 

direction and orientation of vector Va , iii) the weight of the mass, and, finally, iv) 

the direction and orientation of Tinst. Based on these parameters, we will attempt 

to predict the response of the real 2-string pendulum. 

2. The Real 2-Pendulum with α<45 

In our initial analysis, we are going to assume that the string is stiff enough 

and allows no elongations even under large values of tension forces. Therefore, 

we are not considering displacements along the direction of the string. 

Nevertheless, we are going to assume that an amount of energy is lost during 

this switch of velocity direction. Following the discussion of Chapter II, Section A, 

for this case the pendulum will oscillate ideally in a manner that was already 

analyzed in that section. In addition to the previous analysis, we are going to take 

into account the energy losses that occur at the switch point due to the 

introduction of nonlinearity. For this purpose, we will apply the equation of motion 

of oscillation between two arbitrary consecutive switch point impacts, i  and 1+i , 

which is equation (2.18), sin cos cos sin sign 0θ θ α θ α θ+ + =g g
l l

, and the 

simple impact rule at the switch point i , for instance. The simple impact rule 

states that the impacts are instantaneous and the energy loss would be 

represented by a reduction in the velocity magnitude. That is,  

  

 θ θ+ −=i ir  (2.48) 
where r  is the coefficient of restitution at impact [3]. 
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 Referring to Figure 46, we could be more specific and precise while 

calculating the energy absorption during impacts described by equation (2.48). 

As already mentioned, the impact exerted on the mass by the string can be 

described by a collision of a rigid ball with a rigid wall. Since the weight of the 

mass is a conservative force, it does not absorb any energy during the collision. 

Therefore, Tinst is the only force that contributes to energy absorption, which 

equals the work done by force W during the period of contact [4]. Moreover, the 

sole velocity components that are affected by W are those parallel to the 

direction of Tinst. Dealing this time with linear velocities (instead of angular), we 

can see that the components of Vb  and Va , which are parallel to the direction of 

the string causing the impact, (heavy dotted line in Figure 46), are affVb , with a 

magnitude of cos(90 2 )= −affVb Vb a , and affVa , with a magnitude of 

cos(90 2 )= −affVa Va a . Finally, using the notation += iVa V , 

= −Vb V i ,: = +aff affVa V i  and = +aff affVb V i  

 
2

[ )]− +∆ ∆ +
= inst aff affi iT t V V

W  (2.49) 

where         

 − + − −
∆∆ = − = = −
∆inst e i c i e i c i
pT T T p p
t

 (2.50) 

and ∆t  is the infinitesimally small time duration of the impact. 

In equation (2.50), −e iT  is the impact force exerted by the mass m on the 

string causing instant elongation. +c iT  is the impact force exerted by the string 

contracting and releasing its strain energy on the mass m. ,− −e i c ip p  are the 

respective impulses. Consequently, in the circumstance where + −=c i e iT T , there 

would be no energy loss during impact and we would deal with a completely 

elastic collision. 
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 In addition to the above, from the point of view of the conservation of 

momentum and considering, once more, only the velocity components that are 

parallel to the string direction, during the phase of the instantaneous elongation 

of the string 

  

 0 −= +aff eliMV MV p  (2.51) 

where oV  is the velocity of the mass at the end of the elongation phase, elp  is 

the reaction impulse force that is exerted on the mass, and M  is the effective 

mass which equals 
′=
′+

mmM
m m

. In this case, ′m  is the fictitious mass of the 

object onto which the mass m collides. Since this object is represented by a rigid 

wall whose momentum is infinite, we assume that ′ = ∞m . Therefore, =M m  

and, since 0 0=V , the magnitude of the impulse force is 

−=el aff ip mV  

or     

 cos(90 2 )α− −= − = ∆i e ielp mV T t  (2.52) 
where ∆t  is the infinitesimally small time duration of the impact [3]. 

 The next step should be to calculate the c c ip T t+= ∆ . If we conduct a 

similar analysis, we would see result 

 cos(90 2 )α+ += − = ∆c i c ip mV T t  (2.53) 
Looking more closely at equation (2.53), we realize that if 0+ ≠c iT  after 

the string-change point, there would be a linear velocity component parallel to the 

string’s direction in addition to the linear velocity component perpendicular to the 

new string’s direction. The second component promotes the smooth circular 

motion of the mass, while the first component would push the mass to deviate 

from the circular orbit. Consequently, if we want to predict the path of the mass 

that would not deviate from the regular pendulum’s oscillation path we will 

assume that 
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0

cos(90 2 ) 0α
+

+

=
− =

c i

i

T
V

 (2.54) 

 Thus, equation (38) should be manipulated and corrected as follows  

2 2

2
( sin(90 2 )) ( cos(90 2 ))α αθ + + +

+
− + −= = =i i i

i
V V V
l l

 

2 2

2
( sin(90 2 )) ( cos(90 2 ))α α− −− + − =i iV rV

l
 

2 2(sin(90 2 )) ( cos(90 2 ))α α− − + − ⇔iV r
l

 

 2 2(sin(90 2 )) ( cos(90 2 ))θ θ α α+ −= − + −i i r  (2.55) 
where, considering (2.55), the coefficient of restitution should be 0=r . 

The cancellation of the parallel component of the velocity during impact is 

not only an assumption that facilitates the work of predicting the response of a 

real 2-pendulum, but, also, a very good approximation. The sudden impulse 

shock that is applied on the string from the mass produces a compressive wave 

that propagates throughout the length of the string. This wave will finally die out 

under the effect of damping. Damping in almost inextensible strings may be 

caused by several factors, such as viscosity of the air and internal friction. The 

velocity of elastic wave propagation within the string mass is similar to the speed 

of sound [5][6]. Therefore, by comparing this velocity with the time scale 

associated with the periodic motion of the pendulum, the time required for the 

completion of the energy loss related to this shock is negligible. All the above 

support the validity of the assumption that the coefficient of restitution, associated 

with the impact of the mass on the string, is zero. 

Finally, from equations (2.54) and (2.55), the amount of energy loss at the 

switch point is 

 2 2
1

1 ((1 )cos(90 2 ))
2

α−= − −ilossE mV r  (2.56) 
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The system of equations (2.18) and (2.48) or (2.55) can be solved 

numerically using a constant time step of 0.001sec∆ =t  and the forward 

difference scheme. This takes into account equation (2.48) or (2.55). The Matlab 

code, Program_3.m, provides the solution to the system of equations for 

predetermined number of periods.   

 In the following sections, we are going to compare the prediction of the 2-

pendulum response in terms of angular displacement, angular velocity, and string 

tension. We will use the above m-file (solving equations (2.18) and (2.55)) 

combined with those obtained from VISUAL NASTRAN. Additionally, we will plot 

the phase diagrams for each method, as well as the discrepancy between the 

prediction and the VISUAL NASTRAN simulation results. This will better validate 

the precision of the Matlab code.  
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a. Angular Displacement and Velocity Comparison 
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Figure 47.   VISUAL NASTRAN - α=π/18 – θ0=π/10 
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Figure 48.   MATLAB - α=π/18 - θ0=π/10 
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Figure 49.   Prediction discrepancy 
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Figure 50.   VISUAL NASTRAN - α=π/18 - θ0=π/10 
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Figure 51.   MATLAB – α=π/18 – θ0=π/10 
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Figure 52.   Prediction discrepancy 



 55

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

θ (rad)

θ'
 (r

ad
/s

ec
)

 
Figure 53.   VN 4-D - Phase diagram – α=π/18 – θ0=π/10 
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Figure 54.   MATLAB – Phase diagram – α=π/18 – θ0=π/10 
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Figure 55.   VISUAL NASTRAN - α=π/12 - θ0=π/10 
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Figure 56.   MATLAB simulation - α=π/12 - θ0=π/10 



 57

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

t (sec)

δθ
 

 
Figure 57.   Prediction discrepancy 
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Figure 58.   VISUAL NASTRAN - α=π/12 - θ0=π/10 
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Figure 59.   MATLAB simulation - α=π/12 - θ0=π/10 
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Figure 60.   Prediction discrepancy 
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Figure 61.   VISUAL NASTRAN Phase diagram 
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Figure 62.   MATLAB prediction Phase diagram 
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Figure 63.   VISUAL NASTRAN - α=π/6 - θ0=π/10 
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Figure 64.   MATLAB simulation – α=π/6 - θ0=π/10 
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Figure 65.   Prediction discrepancy 
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Figure 66.   VISUAL NASTRAN - α=π/6 - θ0=π/10 
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Figure 67.   MATLAB simulation - α=π/6 - θ0=π/10 
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Figure 68.   Prediction discrepancy 
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Figure 69.   Phase diagram 
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Figure 70.   Phase diagram 
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Evaluating the above set of figures, we conclude the following: 

• The variable frequency of oscillation, as well as when 

the string switch takes place, is relatively well predicted. The error between the 

predicted and actual performance causes spikes in the angular velocity 

discrepancy plots. 

• In terms of the prediction of the angular displacement 

and velocity of the oscillation, the discrepancies are caused, on the one hand, by 

the failure to precisely predict both the location in time of the switch points and 

the energy loss at every one of them. On the other hand, it was not possible to 

obtain the exact equations used in VN 4-D to calculate these parameters. 

Therefore, a comparison with the VN 4-D software results does not provide a 

precise appreciation of the actual accuracy of the results. 

• For smaller values of characteristic angle α, which 

equals less energy loss at the switch point, the prediction discrepancy is 

minimized. 

b. String Tension Comparison 

For the string tension prediction, equation (2.46) was used. The 

Matlab code had already computed the angular velocity and displacement inputs. 
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Figure 71.   Tension  comparison α=π/18 – θ0=π/10 
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Figure 72.   Tension comparison α=π/12 – θ0=π/10 
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Figure 73.   Tension comparison α=π/6 – θ0=π/10 

 
 

The above plots lead to the following conclusions: 

• It can be seen that, for larger values of α, which correspond 

to extensive energy loss at the switch point, VN 4-D reveals time periods when 

the tension on both strings is zeroed. This corresponds to an instantaneous 

jump. Because the mechanism of energy restitution of the ropes used in VN 4-D 

is not known and that there is the possibility that the previously assumed zero 

parallel velocity component is not completely eliminated, the resulting jump after 

impact could be expected. 

• The tension predicted by VN 4-D shows spikes of irregular 

magnitude at the switch points. The existence of these features can be related to 

the previously presented explanation. Although they do not show a pattern, the 

fact that a previously slack string becomes taught within an infinitesimally small 

time duration can provoke this peak tension magnitude. This corresponds to the 

impulse, which zeroes the parallel velocity component. 
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• The Matlab code tension prediction coincides with the VN 4-

D only at the instances when the mass velocity is zero (indicated with a purple 

circle in Figure 72). Therefore, the VN 4-D tension prediction is not in accordance 

with equation (2.46). To understand this unexpected result, a model of two 

standard pendula -- one with a string and the other with a massless rod -- was 

used to calculate the tension during free oscillation with an arbitrary initial 

displacement. The results revealed that the standard rod pendulum’s tension 

agrees with equation (2.46), while the standard string pendulum’s tension does 

not. Moreover, an effort was made to understand the pattern that provided the 

string tension results. After some trial and error efforts, the equation that provided 

an almost identical tension prediction was 

 
2

cos
2
θ θ−= +m lT mg  (2.57) 

 Efforts were made to understand the above equation, but, unfortunately, 

the MSC Software no longer supported the specific software. Consequently, 

further tension comparisons with VN 4-D will not be performed and, also, the 

Matlab results will be presented without validation from the VN 4-D results.  

3. The Real 2-Pendulum with a≥45 

In the case that α=45o, when applying equation (2.55), we realize that for 

0r =  all the kinetic energy of the pendulum would be absorbed by the string 

during impact. Thus, the oscillation would be terminated. The above can be 

visualized from the following graphs, where VISUAL NASTRAN and MATLAB 

simulations are used to provide the response of the 2-string pendulum with 

α=45o. 
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Figure 74.   VISUAL NASTRAN - α=π/4 - θ0=π/10 
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Figure 75.   MATLAB simulation - α=π/4 - θ0=π/10 
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Figure 76.   Prediction discrepancy 
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Figure 77.   VISUAL NASTRAN - α=π/4 - θ0=π/10 
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Figure 78.   MATLAB simulation - α=π/4 - θ0=π/10 
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Figure 79.   Prediction discrepancy 
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Figure 80.   VISUAL NASTRAN – α=π/4 – θ0=π/10 
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Figure 81.   MATLAB  α=π/4 – θ0=π/10 



 72

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2

4

6

8

10

12

14

16

18

20

t (sec)

T(
N

) 

MATLAB
4-D V.N.

 
Figure 82.   Tensions  α=π/4 

 
Although the limiting case of α=45o can be described by equations (2.18) 

and (2.55) (assuming only that 0r = ) if α>45o, the motion of the mass will not be 

governed by linear or nonlinear equations of motion, but only by its interaction 

with the strings. 

 
 

Figure 83.   Force and velocity diagram for α>45o 

α 
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According to Figure 83, the linear velocity before the switch point Vb  (red 

vector) is composed of two components, 1Vb  and 2Vb  (turquoise and green 

vectors, respectively). At the instance when the right string becomes tight, the 

tension of the string (blue vector) exerts an impulse affecting 2Vb . Irrespective to 

the value of the restitution coefficient that governs this impact, 1Vb  cannot 

promote the circular motion of the mass with respect to the right string due to its 

direction. Contrarily, the left string, which becomes slack after the switch point for 

α<45o, continues to be tight and exerts, along with the right string, an impulse on 

the mass opposing 1Vb  (orange vectors). Thus, either the mass will bounce or it 

will come to rest. This depends on the restitution coefficient. Consequently, if we 

preserve the assumption that 0r =  for all mass-string impact interactions, after 

the mass reaches the switch point, it comes to rest. 

E. THE DRIVEN PENDULUM  

Extending the analysis performed in the previous sections, we should 

include the case of the pendulum in which the supporting point, or points, 

undergoes motion due to forcing. The moving support induces complexity to the 

response of the pendulum that may not end in oscillatory behavior [6]. 

1. The Standard Driven Pendulum 

Consider a standard pendulum which, at an arbitrary moment of the 

oscillation, has an angular displacement θ, where 
2 2
π πθ− ≤ ≤ . We define a 

world system of axis where x-axis points to the right and y-axis points upwards. 

An arbitrary motion drives the support point of the pendulum, whose acceleration 

at that moment has both a horizontal and a vertical component.  
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Figure 84.   The standard driven pendulum 
 
 
 

According to the previous analysis, the equation of motion for the undriven 

standard pendulum is either equation (2.6) or (2.2). The effect of the horizontal 

component of the support acceleration is an inertial force on the mass 

Fx mX= − . Similarly, for the vertical component, the inertial force is Fy mY= − . 

We notice that Fy  has the same direction and orientation as gravity. These two 

forces contribute to restoring force with two additional components depending on 

angle θ. Therefore, the new restoring force is  

 ( )sin cosθ θ= + −Fr mg mY mX  (2.58) 
 

Therefore, the equation of motion becomes 

 ( ) sin cos 0θ θ θ++ − =g Y X
l l

 (2.59) 

θ

 

X

Y

mg 
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Finally, from equation (2.59) we can draw the conclusion that, due to the 

horizontal acceleration, the pendulum will initiate oscillations even without the 

existence of initial displacement or initial velocity. Thus, for θ=θ0=0, equation, 

(2.59) becomes X
l

θ = . Finally, the above equation is valid for the range of θ 

already mentioned with one exception: when a jump occurs. The jump behavior 

of the driven pendulum will be analyzed in a subsequent section. 

2. The Driven 2-Pendulum 

Based on the previous analysis and equation (14), we can derive the 

equation of motion for the driven 2-pendulum as follows for 
2 2
π πθ α− ≤ + ≤ : 

( ) sin( ) cos( ) 0g Y X
l l

θ θ α θ α++ + − + =  

( ) (sin cos cos sin ) ( cos cos sin sin ) 0g Y Xsign sign
l l

θ θ α θ θ α θ θ α θ α++ + − − =

 

 ( ) ( )( cos sin )sin ( sin cos ) cos 0θ α α θ α α θ θ+ ++ + + − =g Y X g Y X sign
l l l l

(2.60) 

Again, the validity of equation (2.60) is questioned when a jump occurs. 
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Figure 85.   The driven 2-pendulum 
 
 

a. String Tension Investigation of the Driven 2-Pendulum 

Assuming that the support of the 2-pendulum is accelerated in the 

direction shown in Figure (85), the mass will leave the equilibrium position only if 

T2=0 N. For this to occur, the vertical component of T1 should be able to 

withstand the virtual weight of the mass, which is ( )Wv m Y g= + . We can easily 

prove that the magnitude of the string tension about which the mass will oscillate 

is 

 2( sin( ) cos( ) cos( ))θ θ α θ α θ α= + + + + + +T m l X Y g  (2.61) 

which is valid for all 
2 2
π πα θ α− + ≤ ≤ − . Nevertheless, close attention should 

be given in terms of the sign of angles θ and α. If inconsistencies are to be 

avoided, angle α should always have the same sign as angle θ. A quick look at 

a 

T1 T2

X

YYg
Xg
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Figure 86 shows us that a positive X  would increase the tension on the string 

while a negative X  would decrease it. Nevertheless, if the mass were oscillating 

about the other string, a negative X  would increase the string tension, and so 

on. The above facts are predicted by equation (2.61). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 86.   2-pendulum’s force and acceleration diagram during oscillation 
 

Nevertheless, equation (2.61) has one limitation: the tension can 

only take positive values. When the string tension is zeroed, a jump occurs. That 

behavior will be analyzed in a subsequent section. 

In addition, it would be useful to know the magnitude of the tension 

exerted on the strings while the mass remains in its equilibrium position. While 

the mass is in that position, the sum of the vertical components of T1 and T2 

should be equal to the virtual weight of the mass Wv , while the difference of their 

horizontal components should be equal to mX  

α

T1 T2

X

Y

θ
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cos ( 1 2) ( )T T m Y gα + = +  and sin ( 1 2)T T mXα − =  

solving the above system of two equations 

 

( )1 ( )
2 cos sin

( )2 ( )
2 cos sin

α α

α α

+= +

+= −

m Y g XT

m Y g XT
 (2.62) 

 

 

b. Stability of the 2-Pendulum 

While equation (2.60) describes the 2-pendulum’s oscillation in the 

absence of non-zero initial conditions, the oscillation will not be initiated under 

any value of horizontal acceleration.  

Manipulating equation (2.60) with zero initial conditions, results in 

( ) sin cosg Y X
l l

θ α α+= − + . The vertical components of the restoring force 

tend to drive the mass to move downwards. This motion is constrained in this 

situation since the mass is supported by both the taught string (an exception 

exists for the case that Y  is negative and 0g Y+ < ). Therefore, an angular 

acceleration will be induced only if the horizontal component manages to 

overcome the condition and 

 
tanα

− >
X

Y g  (2.63) 

is fulfilled. 

Another approach, which would lead us to the same conclusion, is 

analyzing the string tension. Assuming that the support of the 2-pendulum is 

accelerated in the direction shown in Figure 86, the mass will leave the 

equilibrium position only if T2=0 N. For this to occur, the vertical component of T1 

should be able to withstand the virtual weight of the mass, which is 
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( )Wv m Y g= + . In the case of the 2-pendulum, which is about to leave its 

equilibrium position 0θ =  and from (2.61), for the mass to be lifted up we must 

have 

cos ( sin cos cos )cos ( )T m X Y g m Y gα α α α α= + + > +  

2 2sin cos sin sinX g Yα α α α> +  

tan
X Y g
α
− >  

Finally, from equation (2.63), we can draw the conclusion that 

choosing larger values for α would make the 2-pendulum more stable. 

Nevertheless, this advantage has a considerable drawback: the increase in string 

tension associated with larger characteristic angles. In Figure 87, one can 

observe both the limiting value of horizontal acceleration, which allows the 2-

pendulum equilibrium, and the maximum tension associated with this horizontal 

acceleration for a range of characteristic angles (1o<α<80o ). 
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Figure 87.   Horizontal acceleration inducing instability versus associated maximum 

tension 
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From the above figure, it can be seen that, although the necessary 

X  would break the equilibrium, which increases steadily for the first half of the 

range of α, the related tension increases in a slower pattern. This difference in 

increasing pattern is caused by the analytical equations that describe them. 

These equations are 

 
lim min

max max
max

( ) tan
( )

cos sin

α

α α

= +

+= +

X g Y
g Y XT

 (2.64) 

One method to evaluate the optimum choice of α would be to define 

a ratio of acceleration over the maximum attained tension. According to the 

previous equations, this ratio would be sinR α= . 

Nevertheless, this method is not effective. The values of the 

required X  to disturb equilibrium are very large for the second half of the α 

range, and even for some values of the first half. A more realistic approach is to 

choose a value of α (for example 20o) as a reference value, αref, and, then, 

compare the maximum tension, Tmaxref , with the one exerted on the strings of the 

2-pendulums of larger α, but still associated with the same refX . 
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Figure 88.   α=20o  reference angle 

 
The above plots reveal that, in a choice of a greater, but less than 

52O, α would be a better choice.  

Another approach is to find the angle α which will result in the 

minimum exerted tension for a combination of vertical and horizontal 

accelerations. In the following figures, we can visualize the variation of optimum 

α when X  and Y  vary from zero to g along with associated tension. The results 

are validated with the constraint that the 2-pendulum should be stable for the 

combination of α, X , and Y . 
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Figure 89.   Optimum characteristic angle investigation for combinations of 

accelerations 
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Figure 90.   Tension related to optimum α 
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A first step to take advantage of the above plots and analysis would 

be to choose the maximum expected X  and Y  for our design and, then, iterate 

for the optimum a in terms of minimum tension. The second step would be to 

verify that the design would be stable for a new range of X  and Y  composed of 

negative values because Y  tends to destabilize the 2-pendulum. In the following 

example, the range of 0.3 0.7g Y g− ≤ ≤  is chosen to challenge the stability of 

the selection of α=38o designed to provide the minimum tension for the 

,X g Y g= =  combination of maximum accelerations.  

As depicted in the following figure, there exists a range of X  and 

Y , where the driving design constraint is not the desired minimum tension, but, 

rather, the stability for the pendulum. Therefore, for X Y g= = , we should select 

another characteristic angle according to the stability criterion. 
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Figure 91.   Design driving factor constraint versus objective function minimization  
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Figure 92.   Characteristic angle selection for combined constraint and objective 

function minimization  
 

 Therefore, from Figure 92, we can decide which should be angle α. 

This would be based on the worst expected negative vertical acceleration. For 

example, a combination of , 0.3X g Y g= = −  would require α=55o. 

In addition to the above manipulations, another design method 

would be the use of basic optimization techniques. In terms of optimization, the 

problem is a minimization problem, i.e., minimizing the maximum exerted tension 

( max max
max

( )
cos sin

g Y XT
α α

+= + ) with one objective variable (characteristic angle α) 

and subject to boundary conditions (
min

0, arctan( )X
g Y

α α> >
+

 ). A Matlab code 

was developed to yield the optimum characteristic angle for given maximum and 
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minimum accelerations. In the following figure, we can visualize the results for an 

arbitrary input combination. 
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Figure 93.   Optimum selection for arbitrary design inputs 

 

c. Jumps of the Driven 2-Pendulum 

The tension magnitude provided by equation (2.61) denotes that, 

under certain conditions, string tension may become zero. Keeping the 

assumption that 
2 2
π πα θ α− + ≤ ≤ − , the only terms that can take tension off the 

string are sinX θ  and cosY θ . Therefore, the restriction that 
2

a πθ + >  for a 

jump to occur, which is valid for the unforced 2-pendulum, is unnecessary. To 

predict the motion of the mass after the jump, we should follow a certain 

procedure. 
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Figure 94.   Jump of the 2-pendulum 

 

Firstly, just after the jump, we should track the position with respect 

to a global coordinate system, x0 and y0, and to the linear velocity magnitude, u, 

of the mass. With the above initial conditions, the mass will follow a projectile 

path. Thus, the equations of motion are 

 
0 0

2
0 0

cos
1sin
2

x x u t

y y u t gt

φ

φ

= +

= + −
 (2.65) 

Secondly, after the jump, we should track the positions, velocities, 

and accelerations of the two support points. Depending on the type of motion 

applied to the support, we should especially track the position of the support 

points during the jump for each time step.  

Finally, we should track the distance between the mass and each 

one of the support points. When this distance becomes equal to the string length, 

θ-
α 

l

 Jump 
initiation 

Jump
end 

XgYg
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it is dynamically possible for the oscillation to proceed again. The methodology 

used to predict the oscillation characteristics after the end of the jump is similar to 

the one used while analyzing the pendulum’s behavior at the switch points. 

Firstly, the jump takes place while both the strings lengths are less than l . 

Consequently, the first step is to identify which string becomes taught first. This 

determines if angular displacement has occurred after the jump. Secondly, the 

magnitude of post-jump angular displacement has to be calculated. Knowing the 

mass positions just before the end of the jump, x  and y , as well as each of the 

string’s support point positions, sinleftZ Z l α= −  and sinrightZ Z l α= + , the 

total angle defined by the taught string and the vertical, φ is  

 

tan( ), 0

tan( ), 0

φ θ

φ θ

−
= >

−

−
= <

−

right

right

left

left

Z z
Y y

z Z
Y y

 (2.66) 

 

Therefore, 

 

 
, 0

, 0
θ φ α θ
θ φ α θ
= − >
= − + <

 (2.67) 

 

Moreover, at the moment when one of the strings becomes taught 

one faces again a mass to string impact. Knowing the linear velocities of the 

mass just before the impact,  

 0

0

cos
sin

φ
φ

=
= −

x

y

u u
u u gt

 (2.68) 

and the horizontal - vertical velocities of the support, X  and Y , the mass will 

undergo impact with the taught string. This is governed by the same restitution 

coefficient assumption that was explained in Chapter II, Section D, number 2. In 
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this case, the impact velocity components are the relative velocities between the 

mass and the support, ,x yimp impx X UyU u u Y= − −= . Consequently, the following 

two equations are used to obtain the post-jump angular velocity 

 

1( cos sin ), 0

1( cos sin ), 0

θ φ φ θ

θ φ φ θ

−= + >

= − − <

imp imp

imp imp

x

x

U Uy
l

U Uy
l

 (2.69) 

  Finally, knowing the post-jump angular displacement and velocity 

initial allows the continuation of the oscillation subject to the new initial 

conditions. 

3. Evaluation of Results 

In the following two sets of figures (Figures 95-99 and Figures 100-104), 

two examples of the response prediction for forced oscillation with jumps are 

presented. A Matlab code Program_3.m was developed to predict the position of 

the mass while the supports are subjected to horizontal, for the first set, and to 

horizontal and vertical motion, for the second set, under conditions that will force 

a jump to occur. The motion that was applied to the support midpoint can be 

visualized in Figures 95 and 100. It can be seen that in order to produce a jump, 

i.e., zero tension on both strings, we applied a sudden stop to a motion that was 

previously under the effect of variable acceleration. This violent stop was enough 

to produce a distinguishable jump both in VN 4-D and in Matlab. The blue solid 

lines represent the Matlab predictions for the mass positions and angular 

displacement, while the red dashed lines represent the VN 4-D predictions.  
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Figure 95.   Support midpoint trajectory 
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Figure 96.   Mass trajectory 
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Figure 97.   Angular displacement  
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Figure 98.   Mass absolute position 
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Figure 99.   Tension variation 
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Figure 100.   Support midpoint trajectory 
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Figure 101.   Mass trajectory 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-1.5

-1

-0.5

0

0.5

1

1.5

t (sec)

θ(
ra

d)

 
Figure 102.   Angular displacement 
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Figure 103.   Mass absolute position 
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Figure 104.   Tension variation 
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On the one hand, the positions of the support midpoint (Figures 95 

and 100) and the total mass positions (Figure 96 and 101) are calculated to 

coordinate the axis system with its origin positioned on the support midpoint Xg-
Yg. On the other hand, the absolute mass position is calculated wrt a coordinate 

axis system with its origin at the equilibrium position of the mass following the 

support motion (Figures 98 and 103). Moreover, the angular displacement is 

presented where, during the jumps, the value is set to zero (Figures 97 and 102). 

Finally, as explained in Chapter II, Section D, number 2.d, the strings’ tensions 

are plotted without including the VN 4-D results. 

The discrepancy that can be observed between the Matlab and VN 

4-D results does not seem to be related to the complexity of the induced support 

motion. After a more extensive study of the VN 4-D results (tabulated data 

exported from the software interface), it can be seen that, in some of the jumps, a 

nonlinear change in the mass velocity exists at the exact moment of the jump 

initiation. Introducing this exact nonlinearity in the Matlab code yields the same 

results with VN 4-D. 

4. Convergence Evaluation 

An essential and final step that must be performed before ending the 

analysis of the driven 2-pendulum is to examine the convergence of the results 

for different choices of time steps. From the initial analysis of the free 2-

pendulum to the simulation of the driven 2-pendulum with jumps, the integration 

time step selected for the numerical solution of the nonlinear equations of motion 

was dt=0.001 sec. Therefore, a basic evaluation procedure of the examples will 

be presented to verify that the selected time step offers convergence of results 

over other choices of larger time steps. 
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Figure 105.   Convergence evaluation for forced oscillation – no jumps 
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Figure 106.   Convergence evaluation for forced oscillation – jumps 
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In Figure 105, the convergence is tested with both vertical and horizontal 

support motion. A case with jumps is presented in Figure 106. From both figures, 

one can easily conclude that gradually increasing the time step dt will provoke a 

solution divergence. While the discrepancy for dt=0.005 sec or dt=0.01 sec (up to 

ten times larger than the initial choice) will cause the solution to change slightly, a 

further increase in the time step size may yield solutions with larger 

discrepancies than the original. Especially in the jump cases, it can be seen that 

some jumps are incorrectly predicted (in terms of time of jump initiation and 

termination) or even skipped if the time step is large enough.  
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III. THE FOUR-STRING PENDULUM 

A. THE 4-PENDULUM DESIGN ANALYSIS 

To extend the previous analysis of the 2-pendulum to more complex 

designs, the performance of a four-string pendulum will be analyzed. The four 

strings have the same length and their supports are symmetrically placed wrt the 

mass. All the strings are attached to the center of mass. The following figures 

represent the model that was used in VN 4-D and offers four views of the design: 

  

Figure 107.   4-pendulum perspective and front view 

  

             

Figure 108.   4-pendulum bottom and side view 
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 Such a design is one of the more representative simplifications of the real 

world suspension designs. Multi-rope suspension designs differ from each other 

on the number of ropes that are used, the positioning of their support points, and 

the selection of their attachment positions on the suspended load.  

 The purpose of this section’s analysis will not be to investigate the 

swinging attitude of such a pendulum, but, rather, to study its ability not to swing 

when accelerating motion is applied to its support. Moreover, the string tensions 

will be analyzed to try to draw the most accurate picture of the design 

characteristics that should be considered to achieve a desirable 4-pendulum 

design. 

 
Figure 109.   4-pendulum design characteristics 

 

 In the above figure, the black sphere represents a 1kgr mass and the 

black lines are the strings of the pendulum. The global coordinate system of axis 

is presented. It dictates that the positive X-axis represents the forward motion; 

1

2 

3

4
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the positive Z-axis represents the side motion towards the right; and the positive 

Y-axis represents the upward motion of the support. Since we are now dealing 

with a 3-D analysis, instead of 2-D for the 2-pendulum, there are two distinct 

characteristic angles that have to be defined. In Figure 109, the angle defined by 

the two green lines will be called the forward principal characteristic angle, φ1, 

while the angle defined by the two turquoise lines is the side principal 

characteristic angle, φ2.  

1. String Tension Investigation of the Driven 4-Pendulum 

The 4-pendulum is assumed to be subjected to a forward, lateral, and 

vertical support motion characterized by X , Z , and Y  accelerations, 

respectively. To formulate the tension equations for each individual string, the 

superposition rule will be used. Let us name the strings: string 1, the one closest 

to the global system of axis; and strings 2-4, counting clockwise looking the 

pendulum from the top (Figure 109). 
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Figure 110.   4-pendulum front view tension breakdown 
 

Initially, it will be assumed that 0X = . Thus, the analysis will be similar to 

the one completed for the 2-pendulum. In the figure above, the side view of the 

4-pendulum shows that the strings, represented as dashed turquoise lines, lay on 

the same plane with the turquoise non vertical lines of Figure 109. If one of these 

dashed turquoise lines substituted each side pair of strings, the principal tension 

Tp  in each of those will be in accordance with equations(2.62).  

21Tp  22Tp  

W 
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Figure 111.   4-pendulum side view tension breakdown 

 

Looking the same model from the left-side view, 21Tp  can be analyzed 

into two components, 211Tp  and 212Tp , since they correspond to string 1 and 2, 

respectively. Let us name the angle that each of those tension components forms 

with the resultant tension, φpartial2. These two components are equal and their 

magnitude is 

 

 
2

21
21 211 2

2cosφ
= =

partial

TpTp Tp  (3.2) 

21Tp  

211Tp  212Tp  
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Then, combining equations (3.1) and (3.2),  

 
2 22

21 21
( )1 2 ( )

4cos cos sinφ φ φ
+ Ζ= = +

partial

m Y gTp Tp  (3.3) 

Performing the same analysis for strings 3 and 4 we yield to  

 
2 22

22 22
( )3 4 ( )

4cos cos sinφ φ φ
+ Ζ= = −

partial

m Y gTp Tp  (3.4) 

 If we rename the tensions using simpler symbology to T1, T2, T3, and T4, 

respectively, and perform the same methodology for the case that Z =0, the 

yielding results are 

 
1 11

1 11

( )1 4 ( )
4cos cos sin

( )2 3 ( )
4cos cos sin

φ φ φ

φ φ φ
−

+= = +

+= =

partial

partial

m Y g XT T

m Y g XT T
 (3.5) 

 Introducing three new and more generalized variables H, as the vertical 

position of the mass measured along the negative Y-axis, Lfront, as the frontal 

distance between the support points, and Lside, as the side view distance 

between the support points, the principal characteristic angles can be expressed 

as follows:  

 
1

2

arctan( )
2

arctan( )
2

Lside
H

Lfront
H

φ

φ

=

=
 (3.6) 

Additionally, let us define 1Lp and 2Lp , the lengths of the pseudo-strings 

of the principal tensions (green and turquoise non-vertical lines in Figure 101), 

and l , the length of each string. So, 
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It can easily be proved, using the two previous equations, that  

 

2 2 2

1 21 2

( ) ( )1 12 2
cos cos cos cospartial partial

Lfront LsideH

Hφ φ φ φ

+ +
= =  (3.8) 

 

 Therefore, combining (3.3), (3.4), (3.5) and (3.8), the tensions exerted on 

the four strings for every combination of forward, lateral and vertical 

accelerations are 

 

2 2 2

2 2 2
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 This set of equations can be used, as already done for the corresponding 

one of the 2-pendulum, to predict the stability of the 4-pendulum, i.e., at which 

point that at least one of the string tensions will be equal to zero.  

2. Tension Analysis Validation 

Aiming to validate the above set of equations, the VN 4-D model was 

used. The setup of the model was complicated due to the required level of 

dimensional precision. Finally, the method that provided the most reasonable 

results (absence of nonlinearities in tension) was to combine two separate runs 

of the software -- one with no forward acceleration and one with no lateral 

acceleration -- and then superimpose the results. In this specific model m=1kgr, 

the frontal distance between the support points is Lfront=2m; the side distance is 

Lside=1m; and the vertical position of the mass is H= 2 m. Finally, the applied 

accelerations are 22 ( / sec )X t m= , 24 ( / sec )Z t m= , and 0Y =  (t in seconds). 
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Figure 112.   Strings 1 and 2  tension validation 
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Figure 113.   Strings 3 and 4  tension validation 

 

B. 4-PENDULUM DESIGN OPTIMIZATION 

The procedure of design optimization for the 4-pendulum requires that one 

defines the objective function, the design variables, and the constraints -- just like 

it was done for the 2-pendulum. Once again, the objective function is to minimize 

the tension that will be exerted on a string for a given set of accelerations. The 

design variables are the distances H, Lfront and Lside. 

According to (3.9) set of equations, the Lfront , Lside , and H substitute 

1φ  and 2φ  as the design variables. Nevertheless, we can constrain the value of H 

with an equality constraint, instead of an inequality one, to be able to obtain a 2-

D visualization of the objective function.  

In the following example, the known values are H=1m, 

min min 0.2Lfront Lside m= = , and  



 106

max max max

maxmin

3
gX Z Y

Y Y

= = =

= −
 

 

 

 

0
1

2
3

4
5

6 0

2

4

6

0

5

10

15

20

25

30

Side  length (m)

Frontal length (m)

M
ax

im
um

 T
en

si
on

 (N
)

 
Figure 114.   Maximum exerted tension for arbitrary accelerations 
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Figure 115.   Maximum tensions exerted for arbitrary accelerations 
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Figure 116.   Visualization of designs that fulfill the stability constraint 
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Figure 117.   Final visualization of maximum tensions for arbitrary accelerations  

 

In Figure 117, we can visualize the acceptable Lfront and  Lside 

combinations and at the same time find the optimum solution to our problem. 

Clearly the optimum solution is Lfront= Lside=2m. This solution can also be 

verified using the fmincon optimization Matlab function, which also yields the 

same result. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY AND CONCLUSIONS 

The following table summarizes the basic equations developed throughout 

this thesis. 

A/A Description Equation Equation 

No 

1 

Free 

oscillation 

of 

2-

pendulum 

sin cos cos sin sign 0θ θ α θ α θ+ + =g g
l l  

subject to 
 

2 2(sin(90 2 )) ( cos(90 2 ))θ θ α α+ −= − + −i i r  

(2.18) 

and 

(2.55) 

2 

SCPA 

method 

prediction 

0
0

2cosθ ω
π ω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= Α + P t
A

 

2
0 cos

sin

ω α

α

=

=

g
l

gP
l

 

(2.32) 

and 

(2.24) 

3 

Energy 

method 

prediction 

sin 0θ θ+ =gF
l

 

( )0 0
0 0/sin sinθ θα θ θ θ θ= +∫ ∫F mg d mg d  

(2.39) 

and 

(2.38) 

4 

Driven  

2-

pendulum 

( )( cos sin )sin

( )( sin cos ) cos 0

θ α α θ

α α θ θ

++ + +

+ − =

g Y X
l l

g Y X sign
l l

 

 

(2.60) 
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5 

Stability 

criterion for 

driven 

2-

pendulum 

tanα
− >

X
Y g  (2.63) 

6 

String 

tensions 

for driven 

2-

pendulum 

while in 

equilibrium 

position 

( )1 ( )
2 cos sin

( )2 ( )
2 cos sin

α α

α α

+= +
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(3.9) 

Table 2.  Equations summary 

 

Based on the analysis performed throughout this thesis, including both the 

analytical formulation of the mathematical equations and their validation 

performed with the aid of VN 4-D, we can draw the following conclusions: 



 111

• The 2-pendulum’s configuration of two strings per mass 

introduces two distinct nonlinear oscillation characteristics. The first one results 

from the discontinuity in its stiffness around the equilibrium position, i.e. an 

instantaneous jump in the value of the restoring moment around zero. Four 

different methods, were used to incorporate this discontinuity in analytical 

equation formulation: Numerical solution with ode45, exact solution for a time 

increment, SCPA method and Energy method.  

• The second nonlinear oscillation characteristic is related to 

the energy dissipation that takes place at the switch point. The dynamics that 

govern this behavior are correlated to the dynamics of a standard collision of a 

mass on a rigid wall, with specific velocity direction constraints before and after 

the collision.  The idealized model is based on an instantaneous impact and total 

energy loss related to the mass’ velocity component parallel to the taught string’s 

direction. This assumption is validated by the VN 4-D simulation.     

• Another characteristic that was analyzed was the stability of 

the 2-string pendulum in forced oscillation. This string configuration results in the 

absence of oscillatory behavior if the mass is initially at the equilibrium position 

and the driving horizontal and vertical accelerations do not exceed values 

determined exclusively by the characteristic angle α. This observation allows the 

rational design of support systems under given support motion characteristics.  

• The general behavior of the driven 2-pendulum was 

investigated including the case of induced jumps. Specific examples 

demonstrated the highly non-nonlinear behavior of the 2-pendulum when 

extreme acceleration values of the support cause the strings to go slack.  

•  Finally, the analysis of the 2-pendulum was extended on the 

4-pendulum configuration, which is a more common support design in practice. A 

typical optimization study was presented in order to visualize the practical design  
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advantages that such an analysis offers. It was shown that it is possible to 

reduce both motions and cable tensions by appropriate selections of string 

angles. 

B. RECOMMENDATIONS 

Further development of the analysis presented in this work could be in the 

application of angular support motion, both for the case of forced oscillations of 

the 2-pendulum and the trade off analysis. This work would provide a more 

realistic representation of the support motion analogous to the motion of the ship. 

Further extensions to this work by considering the effects of string elasticity are 

also recommended. 
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APPENDIX: COMPUTER PROGRAMS  

%Program_1.m 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Computing the response of free 2-pendulum using three distinct 
methods: Numerical solution, SCPA method and Energy method 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
  
clear all 
clc 
close all 
global a omega2 A omega P maxy1 Thetao t increased_restoring 
THETAo=pi/10            %initial angular displacement 
THETAo_dot=0            %initial angular velocity 
  
  
a=input('Give the characteristic angle a ');%2-pendulum's 
characteristic 
                                            %angle 
g=9.81;                 %acceleration of gravity 
ll=1;                   %equivalent string length which equals to the   

%simple pendulum string length or the 
%perpendicular distance of the mass from 
%the plane of suspension                     

l=ll/cos(a)             %string length of complex pendulum  
omega2=g/l;             %square of the natural frequency of the  
                        % standard pendulum 
omega2o=omega2*cos(a);  %square of the pseudo natural frequency of the  
                        %2-pendulum 
tf=3;                   %final time 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Numerical solution of the differential equation of motion 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
options = odeset('RelTol',1e-6,'AbsTol',[1e-6 1e-6]); 
[t,x]=ode45('Ffull',[0:0.01:tf],[THETAo,THETAo_dot],options);  
[t,x(:,1)]; 
X1=x; 
  
  
                                figure (1) 
                                
           hold on 
           title('\alpha=\pi/6') 
                                plot(t,x(:,1),'g') 
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maxy1=max(x(:,1)); 
maxy2=max(x(:,2)); 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%SCPA method 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
 A=THETAo; 
 B=sqrt(2*g*(ll-cos(THETAo+a))/l); 
                                t=0:0.01:tf; 
[xap,yap,Tapprox,Uo,Texact,t1,Ain]=SCPA(t,a,omega2,A,omega,P,maxy1); 
  
  
                                plot(t,xap,'--r') 
  
X1ap=[]; 
Y1ap=[]; 
for i=1:Tapprox*100; 
   t=(i-1)*0.01; 
   [xap,yap,Tapprox,Uo,Texact,t1,Ain]=SCPA(t,a,omega2,A,omega,P,maxy1); 
  
X1ap(i)=xap; 
Y1ap(i)=yap; 
end 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Energy method  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
syms x Theta phi increasing_factor square_nat_freq phi t Initial_theta 
Initial_theta_dot 
y=int('sin(x)',x,0,Theta); 
z=int('sin(phi+x)',x,0,Theta); 
z=subs(z,phi,a); 
z=subs(z,Theta,maxy1); 
y=subs(y,Theta,maxy1); 
increased_restoring=z/y; 
  
  
[t,y]=ode45('E',[0:0.01:tf],[THETAo,THETAo_dot],options); 
[t,y(:,1)]; 
plot(t,y(:,1),'-.b') 
Y1=y; 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
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                                t=0:0.01:tf; 
                                 
                                xlabel('t (sec)') 
                                ylabel('\theta (rad)') 
                                grid on 
                                box on 
                                legend('ODE45 ','SCPA method','Energy 
method')  
                                axis([0 tf -1.25*maxy1 0.6]) 
             hold off 
  
Tapprox1=Tapprox;   % Approximate Period of the Slowly Changing method 
Texact1=Texact;     %Period from the analytical solution calculating  
                    % for the time period when the sign of theta is  
     %constant 
                             
  
  
  
figure (2) 
title('\alpha=\pi/6') 
hold on 
plot(X1(1:Texact1*100,1)./THETAo,X1(1:Texact1*100,2)./sqrt(omega2o),'g'
,X1ap./THETAo,Y1ap./sqrt(omega2o),'--r', 
Y1(1:Tapprox1*100,1)./THETAo,Y1(1:Tapprox1*100,2)./sqrt(omega2o),'-.b') 
grid on  
box on 
xlabel('\theta/\thetao');ylabel('\theta''/\omega\o') 
legend('ODE45 ','SCPA method','Energy method')  
axis([-1.5 1.5 -1  1]) 
hold off 
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%Subroutine Ffull.m of Program_1.m and Program_2.m 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Numerical solution of the differential equation of motion for  
%the 2-pendulum 
%---------------------------------------------------------------------- 
function xp=Ffull(t,x) 
global a omega2 
  
xp=zeros(2,1);  
xp(1)=x(2); 
  
xp(2)=-sin(x(1))*omega2*cos(a)-omega2*cos(x(1))*(sin(a))*sign(x(1));  
 

 
%Subroutine E.m of Program_1a.m and Program_1b.m 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Numerical solution of the differential equation of motion for  
%the 2-pendulum 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
function yp=E(t,y) 
global a omega2 increased_restoring 
  
yp=zeros(2,1);  
yp(1)=y(2); 
  
yp(2)=-sin(y(1))*omega2*increased_restoring; 
 
 
 
%Subroutine SCPA.m of Program_1.m 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%SCPA method 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
function 
[xap,yap,Tapprox,Uo,Texact,t1,Ain]=SCPA(t,a,omega2,A,omega,P,maxy1); 
global a omega2 A  omega P maxy1 Ain  
P=omega2*sin(a); 
omega =sqrt(omega2*cos(a)); 
t1=(1/sqrt(omega2))*acos(1/(1+(A*omega2*cos(a))/(omega2*sin(a)))); 
xap=A*cos((omega+2*P/(pi*omega*A))*t); 
yap=A*(omega+2*P/(pi*omega*A))*sin((omega+2*P/(pi*omega*A))*t); 
Tapprox=2*pi/(omega+2*P/(pi*omega*A)); 
Uo=-omega*(A+P/(omega.^2))*sin(omega*t1); 
Ain=-Uo/omega -(P/(omega.^2))*sin(omega*t1); 
Texact=(4/omega)*acos(1/(1+A*omega*omega/P)); 



 117

 

 
%Program_2.m 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Computing the response of free 2-pendulum using three distinct 
methods: Numerical solution, SCPA method and Energy method 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
  
clear all 
clc 
close all 
global a omega2 A omega P maxy1 Thetao t increased_restoring 
THETAo=0                %initial angular displacement 
THETAo_dot=1.22         %initial angular velocity 
  
  
a=input('Give the characteristic angle a ');%2-pendulum's 
characteristic angle 
                                             
g=9.81;                 %acceleration of gravity 
ll=1;                   %equivalent string length which equals to the   
%simple pendulum string length or the %perpendicular distance of the 
mass from 
%the plane of suspension                     
l=ll/cos(a)             %string length of complex pendulum  
omega2=g/l;             %square of the natural frequency of the  
                        % standard pendulum 
omega2o=omega2*cos(a);  %square of the pseudo natural frequency of the  
                        %2-pendulum 
tf=3;                   %final time 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Numerical solution of the differential equation of motion 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
options = odeset('RelTol',1e-6,'AbsTol',[1e-6 1e-6]); 
[t,x]=ode45('Ffull',[0:0.01:tf],[THETAo,THETAo_dot],options);  
[t,x(:,1)]; 
  
%----------------------------------------------------------------------
%---------------------------------------------------------------------- 
%Predicting the maximum displacement based on the initial velocity  
% using energy conservation and geometry 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
so=l*cos(a); 
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h=THETAo_dot*THETAo_dot*l*l/(2*g); 
h1=ll-h; 
THETAo2=acos(h1/l)-a; 
  
  
  
                                figure (1) 
                                
           hold on 
           title('\alpha=\pi/6') 
                                plot(t,x(:,1),'g') 
  
  
                                 
maxy1=max(x(:,1)); 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%SCPA method 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
A=THETAo2;  
                                t=0:0.01:3; 
[xap,Tapprox,Uo,Texact,t1,Ain]=SCPA_u(t,a,omega2,A,omega,P,maxy1); 
  
                                plot(t,xap,'--r') 
  
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Energy method  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
syms x Theta phi increasing_factor square_nat_freq phi t Initial_theta 
Initial_theta_dot 
y=int('sin(x)',x,0,Theta); 
z=int('sin(phi+x)',x,0,Theta); 
z=subs(z,phi,a); 
z=subs(z,Theta,maxy1); 
y=subs(y,Theta,maxy1); 
increased_restoring=z/y; 
  
  
[t,y]=ode45('E',[0:0.01:tf],[THETAo,THETAo_dot],options); 
[t,y(:,1)]; 
plot(t,y(:,1),'-.b') 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
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                                xlabel('t (sec)') 
                                ylabel('\theta (rad)') 
                                grid on 
                                box on 
                                legend('ODE45 ','SCPA method','Energy 
method')  
                                axis([0 tf -1.25*maxy1 3*maxy1]) 
             hold off 

 

. 
 
 
%Subroutine SCPA_U.m of Program_2.m 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%SCPA method for initial velocity 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
function 
[xap,Tapprox,Uo,Texact,t1,Ain]=SCPA(t,a,omega2,A,omega,P,maxy1); 
global a omega2 A  omega P maxy1 Ain 
P=omega2*sin(a); 
omega =sqrt(omega2*cos(a)); 
t1=(1/sqrt(omega2))*acos(1/(1+(A*omega2*cos(a))/(omega2*sin(a)))); 
xap=A*sin((omega+2*P/(pi*omega*A))*t); 
Tapprox=2*pi/(omega+2*P/(pi*omega*A)); 
Uo=-omega*(A+P/(omega.^2))*sin(omega*t1); 
Ain=-Uo/omega -(P/(omega.^2))*sin(omega*t1); 
Texact=(4/omega)*acos(1/(1+A*omega*omega/P)); 
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%Program_3.m 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Computing the response of the driven 2-pendulum for a given and  
% specific set of support motion 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
  
%---------------------------------------------------------------------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ATTENTION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%this m-file is valid only when the appropriate and specific data_1.m  
%and data_2.m data files exist in the same folder since those files  
% contain both the support motion info and the corresponding results  
% from Nastran for comparison and validation purposes 
%---------------------------------------------------------------------- 
  
  
  
  
  
  
clc 
clear all 
format long 
fprintf('make sure that you have copied the data provided by Nastran') 
datainput=input('if you already have press 1     ') 
if datainput==1 
    fprintf('good to go') 
else  
    break 
end 
  
  
%call the data file 
dat=input('choose the data file, 1 for latteral and vertical motion, 2 
for latteral  motion') 
if dat==1 
data_1 
else  
data_2 
end 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%response before the stability is broken 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
  
ti=0;                   %initial time condition 
tf=length(data(:,2))/1000-0.001;%final time condition 
dt=0.001;               %time step 
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nt=fix((tf-ti)/dt)      %number of time steps 
a=pi/18;                %pendulation characteristic angle 
g=9.81;                 %acceleration of gravity 
ll=1;                   %equivalent string length which equals to the  
                        %simple pendulum string length or the  
                        %perpendicular distance of the mass from the               
                        % plane of suspension 
l=ll/cos(a);            %string length of complex pendulum  
omega2=g/l;             %square of the natural frequency of the simple  
                        %pendulum 
omega2o=omega2*cos(a);  %square of the pseudo natural frequency of the  
                        %2-pendulum 
r=0;                    %restitution coefficient 
m=1;                    %mass 
  
%---------------------------------------------------------------------- 
%initializing the  acceleration, velocity  and displacement vectors  
%---------------------------------------------------------------------- 
acc=zeros(1,nt+1);      %mass angular acceleration 
vel=zeros(1,nt+1);      %mass angular velocity 
disp=zeros(1,nt+1);     %mass angular displacement 
force=zeros(1,nt+1);    %pseudo-restoring force on mass  
Zabs=zeros(1,nt+1);     %absolute horizontal position of mass 
Yabs=zeros(1,nt+1);     %absolute vertical position of mass 
Z=zeros(1,nt+1);        %global horizontal position of mass 
Y=zeros(1,nt+1);        %global vertical position of mass 
Zs=zeros(1,nt+1);       %global horizontal position of support midpoint 
Ys=zeros(1,nt+1);       %global vertical position of support midpoint 
acc_rest=zeros(1,nt+1); %pseudo-acceleration corresponding to the case                 
%that the mass doesn't break stability 
Zsddot=zeros(1,nt+1);   %global horizontal acceleration of support 
%midpoint    
Ysddot=zeros(1,nt+1);   %global vertical acceleration of support 
%midpoint 
Zsdot=zeros(1,nt+1);    %global horizontal velocity of support midpoint    
Ysdot=zeros(1,nt+1);    %global vertical velocity of support midpoint 
Zsdot(1,1)=0; 
Ysdot(1,1)=0; 
Zsddot(1,1)=0; 
Ysddot(1,1)=0; 
Vzj=zeros(1,nt+1);      %linear horizontal velocity of mass during jump 
Vyj=zeros(1,nt+1);      %linear vertical velocity of mass during jump 
  
%---------------------------------------------------------------------- 
%applying the data input in the support midpoint motion 
%---------------------------------------------------------------------- 
  
if dat==1 
Zs=data(:,2)'./1000; 
Ys=data(:,3)'./1000; 
else  
Zs=data(:,2)'./1000; 
Ys=zeros(1,nt+1); 
end    
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%---------------------------------------------------------------------- 
%initializing the  tension, support points position  and string length 
%vectors  
%---------------------------------------------------------------------- 
Tright=zeros(1,nt+1);   %right string tension 
Tleft=zeros(1,nt+1);    %left string tension 
Zright=zeros(1,nt+1);   %horizontal position of right support point  
Zleft=zeros(1,nt+1);    %horizontal position of left support point 
Yright=zeros(1,nt+1);   %vertical position of right support point  
Yleft=zeros(1,nt+1);    %vertical position of left support point  
Lright=zeros(1,nt+1);   %distance of mass from right support point     
Lleft=zeros(1,nt+1);    %distance of mass from left support point 
  
for it=1:nt-1;          %calculating the support displacements and 
%accelerations based on the support motion 
    Zsdot(1,it+1)=(Zs(1,it+1)-Zs(1,it))/dt; 
    Ysdot(1,it+1)=(Ys(1,it+1)-Ys(1,it))/dt; 
    Zsddot(1,it+1)=(Zsdot(1,it+1)-Zsdot(1,it))/dt; 
    Ysddot(1,it+1)=(Ysdot(1,it+1)-Ysdot(1,it))/dt; 
end 
vel(1,1)=0;             %initial angulat velocity condition 
disp(1,1)=0;            %initial angular displacement condition 
Zabs(1,1)=-l*(sin(abs(disp(1,1))+a)-sin(a)); 
Yabs(1,1)=ll-l*(cos(abs(disp(1,1))+a)); 
if abs(max(Ysddot))==0 && abs(max(Zsddot))==0&& abs(disp(1,1)==0) 
%if there is no acceleration applied to the support points 
%there is no delay for breaking the stability 
    T=1;                               
else                    
  
for it=1:nt; 
    acc_rest(1,it)=(abs(Zsddot(1,it)))/tan(a) -Ysddot(1,it); 
    Tright(1,it)=(m/2)*((Ysddot(1,it)+g)/cos(a) +Zsddot(1,it)/sin(a)); 
    Tleft(1,it)=(m/2)*((Ysddot(1,it)+g)/cos(a) -Zsddot(1,it)/sin(a)); 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
  
    if acc_rest(1,it)<g                     %if the combined applied 
%acceleration is less than the required to break the stability  
        disp(1,it)=0;                       %there is no oscillation 
        vel(1,it)=0; 
        acc(1,it)=0; 
        Zabs(1,it)=-l*(sin(disp(1,1)+a)-sin(a)); 
        Yabs(1,it)=ll-l*(cos(abs(disp(1,1))+a)); 
        Z(1,it)=Zabs(1,it)+Zs(1,it); 
        Y(1,it)=Yabs(1,it)+Ys(1,it)-ll; 
        Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 



 123

        Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
  
    else 
        T=it; 
        Zabs(1,it)=-l*(sin(disp(1,1)+a)-sin(a)); 
        Yabs(1,it)=ll-l*(cos(abs(disp(1,1))+a)); 
        Z(1,it)=Zabs(1,it)+Zs(1,it); 
        Y(1,it)=Yabs(1,it)+Ys(1,it)-ll; 
        Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 
        Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
        Vz1=Zsdot(1,T); 
        Vy1=Ysdot(1,T); 
        ACC=Zsddot(1,T); 
         
    break 
    end 
  
end 
  
  
end 
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Step after the stability is broken 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
for it=T:nt;            %loop1 - initiating calculations after 
%stability is brocken 
  if (Tright(1,it)>0 || Tleft(1,it)>0)%condition1 - oscillations take 
%place only if at least one of the tensions has a non-zero value  
  force(1,it)=-
(omega2+Ysddot(1,it)/l)*(sin(a))*cos(disp(1,it))*sign(disp(1,it)); 
  acc(1,it)=force(1,it)-
(omega2+Ysddot(1,it)/l)*sin(disp(1,it))*cos(a)+(Zsddot(1,it))*((cos(abs
(disp(1,it))+a)))/l; 
  vel(1,it+1)=vel(1,it)+acc(1,it)*dt; 
    disp(1,it+1)=disp(1,it)+vel(1,it+1)*dt; 
    if disp(1,it+1)*disp(1,it)>=0       %condition2 - calculations 
%while the mass oscillates without changing strings 
       disp(1,it+1)=disp(1,it)+vel(1,it+1)*dt; 
       Zabs(1,it+1)=-sign((disp(1,it+1)))*l*(sin(abs(disp(1,it+1))+a)-
sin(a)); 
       Yabs(1,it+1)=ll-l*(cos(abs(disp(1,it+1))+a)); 
       Z(1,it+1)=Zabs(1,it+1)+Zs(1,it+1); 
       Y(1,it+1)=Yabs(1,it+1)+Ys(1,it+1)-ll; 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
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    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
  
  
  
        
    else                                %condition2 - the mass reached  
%a string switch point 
    T1=it; 
    V=vel(1,T1); 
    Vaft=sign(V)*sqrt((V*sin(pi/2 -2*a)).^2+(r*V*cos(pi/2 -2*a)).^2); 
    vel(1,T1+1)=Vaft; 
    disp(1,T1+1)=disp(1,it)+vel(1,T1+1)*dt; 
       Zabs(1,it+1)=-sign((disp(1,it+1)))*l*(sin(abs(disp(1,it+1))+a)-
sin(a)); 
       Yabs(1,it+1)=ll-l*(cos(abs(disp(1,it+1))+a)); 
       Z(1,it+1)=Zabs(1,it+1)+Zs(1,it+1); 
       Y(1,it+1)=Yabs(1,it+1)+Ys(1,it+1)-ll; 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
  
    end                                    %condition2 
    if disp(1,it+1)>0                      %condition3 - calculating 
%the strings tension depending on which one of the strings is taught 
       
Tright(1,it+1)=m*(vel(1,it+1)*vel(1,it+1)*l+Zsddot(1,it+1)*sin(abs(disp
(1,it+1))+a)+(g+Ysddot(1,it+1))*cos(abs(disp(1,it+1))+a)); 
       Tleft(1,it+1)=0; 
       if Tright(1,it+1)>0 
          Tright(1,it+1)=Tright(1,it+1); 
       else 
           Tright(1,it+1)=0; 
       end 
    else                                    %condition3 
       Tleft(1,it+1)=m*(vel(1,it+1)*vel(1,it+1)*l-
Zsddot(1,it+1)*sin(abs(disp(1,it+1))+a)+(g+Ysddot(1,it+1))*cos(abs(disp
(1,it+1))+a)); 
       Tright(1,it+1)=0; 
       if Tleft(1,it+1)>0 
          Tleft(1,it+1)=Tleft(1,it+1); 
       else 
          Tleft(1,it+1)=0; 
       end 
    end                                     %condition3 
  else                                      %condition1 - the first 
%jump starts 
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    T2=it 
     
    V=vel(1,T2); 
    disp(1,T2+1)=disp(1,T2)+vel(1,T2)*dt; 
    Zabs(1,it)=-sign((disp(1,it)))*l*(sin(abs(disp(1,it))+a)-sin(a)); 
    Yabs(1,it+1)=ll-l*(cos(abs(disp(1,it))+a)); 
    Z(1,it)=Zabs(1,it)+Zs(1,it); 
    Y(1,it)=Yabs(1,it)+Ys(1,it)-ll; 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
    if disp(1,T2)>0                         %condition4 - calculating 
%the linear velocity of the mass at the moment where the jump initiates 
        Vmagn=abs(l*vel(1,T2)); 
        Vz2=-sign(V)*Vmagn*cos((disp(1,T2)+a))+Zsdot(1,T2-1); 
        Vy2=sign(V)*Vmagn*sin((disp(1,T2)+a))+Ysdot(1,T2-1); 
        break 
    else                                    %condition4 
        Vmagn=l*abs(vel(1,T2)); 
        Vz2=-sign(V)*Vmagn*cos((abs(disp(1,T2))+a))+Zsdot(1,T2-1); 
        Vy2=-sign(V)*Vmagn*sin((abs(disp(1,T2))+a))+Ysdot(1,T2-1); 
        break 
    end                                     %condition4 
  end                                       %condition1 
   
  
  end                                       %loop1 
  
  %correcting the computation rounding errors 
  LLright=Lright(1,T2)-0.004; 
  LLleft=Lleft(1,T2)-0.004; 
  Lright(1,T2)=Lright(1,T2)-0.004; 
  Lleft(1,T2)=Lleft(1,T2)-0.004; 
  
   
  while it<nt 
  jump 
  afterjump 
  end 
   
   
   
   
  
  
  
time =data(:,1);  
if dat==1 
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figure (4) 
plot(time,disp,time,data(:,4),'--r') 
xlabel('t (sec)');ylabel('\theta(rad)'); 
axis([0 tf -pi/2 pi/2]) 
grid on 
figure (5) 
subplot(2,1,1);plot(time,Zabs,time,data(:,10)./1000,'--r'  ) 
xlabel('t (sec)');ylabel('absolute horizontal position (m)'); 
grid on 
axis([0 tf -1 1]) 
subplot(2,1,2);plot(time,Yabs,time,data(:,9)./1000+ll ,'--r' ) 
xlabel('t (sec)');ylabel('absolute vertical position (m)'); 
grid on 
axis([0 tf -1 1]) 
  
figure (6) 
subplot(2,1,1);plot(time,Z,time,data(:,8)./1000 ,'--r' ) 
xlabel('t (sec)');ylabel('total horizontal position (m)'); 
grid on 
axis([0 tf -1 3]) 
subplot(2,1,2);plot(time,Y,time,data(:,7)./1000 ,'--r' ) 
xlabel('t (sec)');ylabel('total vertical position (m)'); 
grid on 
axis([0 tf -1 1]) 
else 
 figure (4) 
plot(time,disp,time,data(:,3),'--r') 
xlabel('t (sec)');ylabel('\theta(rad)'); 
axis([0 tf -pi/2 pi/2]) 
grid on 
figure (5) 
subplot(2,1,1);plot(time,Zabs,time,data(:,4)./1000-Zs','--r'  ) 
xlabel('t (sec)');ylabel('absolute horizontal position (m)'); 
grid on 
axis([0 tf -1 1]) 
subplot(2,1,2);plot(time,Yabs,time,data(:,5)./1000+ll-Ys' ,'--r' ) 
xlabel('t (sec)');ylabel('absolute vertical position (m)'); 
grid on 
axis([0 tf -1 1]) 
  
figure (6) 
subplot(2,1,1);plot(time,Z,time,data(:,4)./1000 ,'--r' ) 
xlabel('t (sec)');ylabel('total horizontal position (m)'); 
grid on 
axis([0 tf -1 5]) 
subplot(2,1,2);plot(time,Y,time,data(:,5)./1000 ,'--r' ) 
xlabel('t (sec)');ylabel('total vertical position (m)'); 
grid on 
axis([0 tf -1 0])    
end 
  
figure (7) 
subplot(2,1,1);plot(time,Lright ) 
xlabel('t (sec)');ylabel('absolute horizontal position (m)'); 
grid on 
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axis([0 tf 0 2]) 
subplot(2,1,2);plot(time,Lleft ) 
xlabel('t (sec)');ylabel('absolute vertical position (m)'); 
grid on 
axis([0 tf 0 2]) 
  
  
  
figure (8) 
subplot(2,1,1);plot(time,Zs ) 
xlabel('t (sec)');ylabel(' horizontal support position (m)'); 
grid on 
axis([0 tf 0 5]) 
  
subplot(2,1,2);plot(time,Ys ) 
xlabel('t (sec)');ylabel('vertical support position (m)'); 
grid on 
axis([0 tf -1 2]) 
  
  
figure (10) 
plot(time,Tright, time, Tleft) 
xlabel('t (sec)'); 
ylabel('tension (N)') 
legend('right string','left string') 
axis tight 
 
 
 
 
 
 
%jump.m subroutine - part of the Program_3.m code 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Computing the response of the driven 2-pendulum when a jump is 
initiated 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
  
  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%collecting data from the main file 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
Lright(1,T2)=LLright; 
Lleft(1,T2)=LLleft; 
Vyj(1,T2)=Vy2; 
Vzj(1,T2)=Vz2; 
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for it=T2+1:nt;                                 %loop1 - initiating 
%calculations 
  if (Lleft(1,it-1)>l || Lright(1,it-1)>l)      %condition1 - if the 
%length of at least one of the strings is equal to l, the the jump is 
%terminated 
    T3=it;                                        
    Zright(1,it)=Zs(1,it)+l*tan(a);              
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it);    
    Vzj(1,it)=Vz2; 
    Vyj(1,it)=Vyj(1,it-1)-(g)*dt; 
    Z(1,it)=Z(1,it-1)+Vz2*dt; 
    Y(1,it)=Y(1,it-1)+Vyj(1,it)*dt; 
    Zabs(1,it)=Z(1,it)-Zs(1,it); 
    Yabs(1,it)=ll+Y(1,it)-Ys(1,it); 
    vel(1,it)=0; 
    disp(1,it)=0;             
    Vzj1=Vzj(1,it); 
    Vyj1=Vyj(1,it); 
    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2)-0.004; 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2)-0.004; 
    Vmagnj=sqrt(Vzj1*Vzj1+Vyj1+Vyj1); 
  
break 
  else 
    Vzj(1,it)=Vz2;                              %condition1 - the mass 
%follows a projectile path 
    Vyj(1,it)=Vyj(1,it-1)-(g)*dt;               %during the jump 
    Z(1,it)=Z(1,it-1)+Vz2*dt; 
    Y(1,it)=Y(1,it-1)+Vyj(1,it)*dt; 
    Zabs(1,it)=Z(1,it)-Zs(1,it); 
    Yabs(1,it)=ll+Y(1,it)-Ys(1,it); 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2)-0.004; 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2)-0.004; 
    vel(1,it)=0; 
    disp(1,it)=0;    
  end                                           %condition1 
end                                             %loop1 
  
  
if Lright(1,T3)>Lleft(1,T3)                                     
%condition2 - calculating the angular displacement 
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     phi=atan((Zright(1,T3)-Z(1,T3))/(Yright(1,T3)-Y(1,T3)));   %and 
%the velocity of the mass after the  
     alpha=atan(Vyj1/Vzj1);                                     %jump 
%is terminated depending on which string is taught 
     vel(1,T3)=(1/l)*(-Vzj1*cos(phi)+Vyj1*sin(phi));  
     disp(1,T3)=phi-a; 
     
Tright(1,T3)=m*(vel(1,T3)*vel(1,T3)*l+Zsddot(1,T3)*sin(abs(disp(1,T3))+
a)+(g+Ysddot(1,T3))*cos(abs(disp(1,T3))+a)); 
     Tleft(1,T3)=0; 
        if  Tright(1,it+1)>0                    %condition3 - ensuring 
%that the string doesn't support compressive loads 
            Tright(1,it+1)=Tright(1,it+1); 
        else 
            Tright(1,it+1)=0; 
        end 
else   %condition2                                                          
     phi=atan((Z(1,T3)-Zleft(1,T3))/(Yleft(1,T3)-Y(1,T3)));        
     phit=-phi; 
     alpha=atan(Vzj1/Vyj1); 
     alpha*180/pi; 
     vel(1,T3)=(1/l)*(-Vzj1*cos(phi)-Vyj1*sin(phi));    
     disp(1,T3)=-(phi-a); 
     
Tleft(1,T3)=m*(vel(1,T3)*vel(1,T3)*l+Zsddot(1,T3)*sin(abs(disp(1,T3))+a
)+(g+Ysddot(1,T3))*cos(abs(disp(1,T3))+a)); 
     Tright(1,T3)=0; 
        if  Tleft(1,it+1)>0                       %condition3 
            Tleft(1,it+1)=Tleft(1,it+1); 
        else 
            Tleft(1,it+1)=0; 
        end 
end     %condition2                                                        
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%afterjump.m subroutine - part of the Program_3.m code 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%Computing the response of the driven 2-pendulum after a jump is 
%terminated 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
  
  
 
for it=T3:nt; %loop1 - initiating calculations after stability is 
%broken 
  if (Tright(1,it)>0 || Tleft(1,it)>0) %condition1 - oscillations take 
%place only if at least one of the tensions has a non-zero value  
 
  force(1,it)=-
(omega2+Ysddot(1,it)/l)*(sin(a))*cos(disp(1,it))*sign(disp(1,it)); 
  acc(1,it)=force(1,it)-
(omega2+Ysddot(1,it)/l)*sin(disp(1,it))*cos(a)+(Zsddot(1,it))*((cos(abs
(disp(1,it))+a)))/l; 
  vel(1,it+1)=vel(1,it)+acc(1,it)*dt; 
    disp(1,it+1)=disp(1,it)+vel(1,it+1)*dt; 
    if disp(1,it+1)*disp(1,it)>=0       %condition2 - calculations 
%while the mass oscillates without changing strings 
 
       disp(1,it+1)=disp(1,it)+vel(1,it+1)*dt; 
       Zabs(1,it+1)=-sign((disp(1,it+1)))*l*(sin(abs(disp(1,it+1))+a)-
sin(a)); 
       Yabs(1,it+1)=ll-l*(cos(abs(disp(1,it+1))+a)); 
       Z(1,it+1)=Zabs(1,it+1)+Zs(1,it+1); 
       Y(1,it+1)=Yabs(1,it+1)+Ys(1,it+1)-ll; 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
  
  
  
        
    else                                %condition2 - the mass reached 
%a string switch point 
 
    T2=it; 
    V=vel(1,T2); 
    Vaft=sign(V)*sqrt((V*sin(pi/2 -2*a)).^2+(r*V*cos(pi/2 -2*a)).^2); 
    vel(1,T2+1)=Vaft; 
    disp(1,T2+1)=disp(1,T2)+vel(1,T2+1)*dt; 
       Zabs(1,it+1)=-sign((disp(1,it+1)))*l*(sin(abs(disp(1,it+1))+a)-
sin(a)); 
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       Yabs(1,it+1)=ll-l*(cos(abs(disp(1,it+1))+a)); 
       Z(1,it+1)=Zabs(1,it+1)+Zs(1,it+1); 
       Y(1,it+1)=Yabs(1,it+1)+Ys(1,it+1)-ll; 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
  
  
  
  
     
    end                                     %condition2 
     
    if disp(1,it+1)>0                       %condition3 - calculating 
the strings tension depending on which one of the strings is taught 
       
Tright(1,it+1)=m*(vel(1,it+1)*vel(1,it+1)*l+Zsddot(1,it+1)*sin(abs(disp
(1,it+1))+a)+(g+Ysddot(1,it+1))*cos(abs(disp(1,it+1))+a)); 
       Tleft(1,it+1)=0; 
       if Tright(1,it+1)>0   %condition4 - ensuring that 
%the string doesn't support compressive loads 
 
          Tright(1,it+1)=Tright(1,it+1); 
       else 
           Tright(1,it+1)=0; 
       end 
    else                                    %condition3 
       Tleft(1,it+1)=m*(vel(1,it+1)*vel(1,it+1)*l-
Zsddot(1,it+1)*sin(abs(disp(1,it+1))+a)+(g+Ysddot(1,it+1))*cos(abs(disp
(1,it+1))+a)); 
       Tright(1,it+1)=0; 
       if Tleft(1,it+1)>0     %condition4 - ensuring that 
%the string doesn't support compressive loads 
 
          Tleft(1,it+1)=Tleft(1,it+1); 
       else 
          Tleft(1,it+1)=0; 
       end 
    end                                     %condition3 
  
  else                                      %condition1 
    T2=it 
     
    V=vel(1,T2); 
    disp(1,T2+1)=disp(1,it)+vel(1,T2)*dt; 
    Zabs(1,it)=-sign((disp(1,it)))*l*(sin(abs(disp(1,it))+a)-sin(a)); 
    Yabs(1,it+1)=ll-l*(cos(abs(disp(1,it))+a)); 
    Z(1,it)=Zabs(1,it)+Zs(1,it); 
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    Y(1,it)=Yabs(1,it)+Ys(1,it)-ll; 
    Zright(1,it)=Zs(1,it)+l*tan(a); 
    Zleft(1,it)=Zs(1,it)-l*tan(a); 
    Yright(1,it)=Ys(1,it); 
    Yleft(1,it)=Ys(1,it); 
    Lright(1,it)=sqrt((Z(1,it)-Zright(1,it)).^2+(Y(1,it)-
Yright(1,it)).^2); 
    Lleft(1,it)=sqrt((Z(1,it)-Zleft(1,it)).^2+(Y(1,it)-
Yleft(1,it)).^2); 
    if disp(1,T2+1)>0                       %condition5 – calculating 
%the velocity when ont of the strings becomes taught 
        Vmagn=abs(l*vel(1,T2)); 
        Vz2=-sign(V)*Vmagn*cos((disp(1,T2)+a))+Zsdot(1,T2-1); 
        Vy2=sign(V)*Vmagn*sin((disp(1,T2)+a))+Ysdot(1,T2-1); 
        break 
    else                                    %condition5 
        Vmagn=abs(l*vel(1,T2)); 
        Vz2=-sign(V)*Vmagn*cos((abs(disp(1,T2))+a))+Zsdot(1,T2-1); 
        Vy2=-sign(V)*Vmagn*sin((abs(disp(1,T2))+a))+Ysdot(1,T2-1); 
        break 
    end                                     %condition5 
  end                                       %condition1 
   
  
  end                                       %loop1 
  
vel(1,T2); 
Vz2; 
Vy2; 
LLright=Lright(1,T2)-0.004; 
LLleft=Lleft(1,T2)-0.004; 
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